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ABSTRACT 

SECONDARY ELECTRON EMISSION FROM PLASMA PROCESSED 

ACCELERATING CAVITY GRADE NIOBIUM 
 

Miloš Bašović 

Old Dominion University, 2016 

Co-Directors: Dr. Mileta M. Tomović 

Dr. Gene J.-W. Hou 

 

 

Advances in the particle accelerator technology have enabled numerous fundamental 

discoveries in 20th century physics. Extensive interdisciplinary research has always supported 

further development of accelerator technology in efforts of reaching each new energy frontier. 

Accelerating cavities, which are used to transfer energy to accelerated charged particles, 

have been one of the main focuses of research and development in the particle accelerator field. 

Over the last fifty years, in the race to break energy barriers, there has been constant 

improvement of the maximum stable accelerating field achieved in accelerating cavities. Every 

increase in the maximum attainable accelerating fields allowed for higher energy upgrades of 

existing accelerators and more compact designs of new accelerators. Each new and improved 

technology was faced with ever emerging limiting factors. 

With the standard high accelerating gradients of more than 25 MV/m, free electrons inside 

the cavities get accelerated by the field, gaining enough energy to produce more electrons in their 

interactions with the walls of the cavity. The electron production is exponential and the electron 

energy transfer to the walls of a cavity can trigger detrimental processes, limiting the 

performance of the cavity. The root cause of the free electron number gain is a phenomenon 

called Secondary Electron Emission (SEE). Even though the phenomenon has been known and 

studied over a century, there are still no effective means of controlling it. The ratio between the 
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electrons emitted from the surface and the impacting electrons is defined as the Secondary 

Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of 

electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as 

possible using any form of surface manipulation. 

In this dissertation, an experimental setup was developed and used to study the SEY of 

various sample surfaces that were treated by different techniques. Specifically, this work 

provides the results of SEY from the plasma cleaned cavity grade niobium (Nb) samples. Pure 

niobium is currently the material of choice for the fabrication of Superconducting Radio 

Frequency (SRF) cavities. The effect of plasma processing with two different gases will be 

examined in two groups of samples. The first group of samples is made from cavity grade 

niobium. The second group of samples is made from the same material, but include a welded 

joint made by electron beam welding, since in niobium SRF cavities the peak electric and 

magnetic field are seen in close proximity to the welded joints. Both groups of samples will be 

exposed to nitrogen (N2) and a mixture of argon with oxygen (Ar/O2) plasma. It is the goal of 

this research to determine the SEY on these two groups of samples before and after plasma 

processing as a function of the energy of primary electrons. The SEY as a function of the angle of 

incidence of the primary electrons is tested on the samples treated with Ar/O2 plasma. 
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NOMENCLATURE 

SEE  Secondary electron emission 

SEY  Secondary electron yield 

SRF  Superconducting radio frequency 

Tc  Critical temperature for superconductivity 

RRR  Residual resistivity ratio 

Eacc  Accelerating gradient 

Vacc  Accelerating voltage 

d  Length of the cavity 

Q0  Intrinsic quality factor 

ω  Angular resonant frequency 

U  Energy stored by electromagnetic field 

Pc  Dissipated power 

rf  radiofrequency 

BCP  Buffered chemical polishing 

ECP  Electro-chemical polishing 

HPR  High pressure rinsing 

SEM  Scanning electron microscope 

δ  SEY 

δmax  Maximum SEY 

E0  Primary electron energy 

E0I  Primary electron energy of the first crossover point 

E0II  Primary electron energy of the second crossover point 
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E0max  Primary electron energy at maximum SEY 

EDC  Energy distribution curve 

θ  Incident angle of the primary electrons 

WZ  Weld zone 

HAZ  Heat affected zone 

BASE  Base metal surface, sample set 

R-HAZ  Heat treated base metal surface 

WELD  Sample set 

OFFSET Sample set 

ip  Primary electron beam current 

is  Sample current 

ic  Collector current 

XPS  X-ray photoelectron spectroscopy 

RGA  Residual gas analyzer 

SIMS  Secondary ion mass spectroscopy 

(x), (y), (z) Translational axes of motion 

R(y)  Rotational motion around (y) axis 

GUI  Graphical user interface 

Uc  Collector bias voltage 

Us  Sample bias voltage 

PBC  Primary beam collector 

iBP  Current of the back plate 

iFP  Current of the front plate 
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A  Ratio of the iBP, and sum of the iBP and iFP 

   Average SEY 

s  Sample standard deviation 

η  Material characteristic parameter of angular dependence of SEY 

BPP  Before plasma processing 

APP  After plasma processing 

AFM  Atomic force microscope 

EDS  Energy-dispersive x-ray spectroscopy 
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CHAPTER 1 

 

1 INTRODUCTION 

Modern accelerator physics started at the beginning of the 1930s with the Cockcroft-

Walton generator [1] which allowed the first artificial change of the atomic nuclei. In an 

accelerator, charged particles attain near relativistic speeds through an applied electric field 

confined in accelerating cavities. At the time, the achievable energy of the particles was below 1 

MeV. Since then, the constant requirement for higher accelerating energies has driven the 

development of accelerators in energy scale and towards more efficient methods of achieving 

increased energy scale. Today, energy attainable in particle accelerators can reach several TeV. 

As the energy in the accelerators increased, it allowed scientists to detect ever smaller scales of 

matter. It can be said that the development of twentieth century physics can be greatly attributed 

to the development of particle accelerators. 

As the energy levels of accelerators grew so did the scale of the accelerators, from a 

machine that can be placed in a room to 27 km long storage rings at the European Organization 

for Nuclear Research (CERN). With every new generation of particle accelerators, technology 

requirements to build and operate one grew and created the need for a large number of 

complementary research areas. These research areas provided the means of further improving on 

the design of accelerators. A number of technologies originally developed for the need of particle 

accelerators found application outside of their original intent, such as the development of the 

Internet. 
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Acceleration of particles in accelerators occurs in a specially designed resonator cavities. 

Particles accelerate by receiving the energy from the electromagnetic field confined inside the 

cavity. In order to reduce the energy losses and scattering of the particle bunches from collision 

with air or other particles present, the cavities are pumped down to a vacuum level of 10-11 Torr 

or better. In addition, cavities had gone through a significant redesign in order to achieve higher 

energy levels. As the central component of an accelerator, the cavity has been extensively 

studied for various limiting factors that occur with the increase in an applied electric field. 

Shape, field emission, multipacting, material, and others were and still are some of the limiting 

factors in achievable acceleration. Of particular interest is the formation and mitigation of 

electron cloud inside the cavities. Specifically, it has been determined that electron cloud forms 

and grows due to the existence of free charged particles (particles not being accelerated) and the 

Secondary Electron Emission (SEE). Definition of secondary electrons in this work encompasses 

all electrons emitted from the examined surface, regardless of their energy level or formation 

mechanism. Free particles, under the influence of the high electromagnetic field confined inside 

the cavity, are accelerated, and at certain conditions, can impact the surface releasing the 

additional particles. The ratio between the number of electrons leaving the surface and the 

impacting electrons is defined as Secondary Electron Yield (SEY). An increase in the SEY in a 

confined space can have a detrimental effect on the acceleration, limiting the effectiveness of the 

cavities. 

Various surface treatments have proven to be successful in improving the performance of 

cavities, but still the theoretical limit is yet to be achieved. It would appear that current surface 

processing technologies are reaching their potential and in order to continue increasing the 

accelerating gradient of cavities, alternative methods of surface preparation need to be examined. 
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Plasma processing was proven as an effective method for processing the surfaces in research 

areas of semiconductor and medical applications. Recently developed technology might lead to 

an efficient method of processing the accelerating cavities [2]. Although the effect of plasma on 

the various accelerator materials has been studied so far, further experimental research is needed 

to determine the SEE from the cavity surface in order to provide comprehensive data for 

simulations of cavity performance. 

The objective of this work was to study the effects of plasma processing on the SEY at the 

surface of niobium samples at a wide range of energies (60-2000 eV) of impacting electrons. The 

effects of electrons impacting the surface were observed at various impacting angles in the range 

from -60° to +60° around the angle of normal incidence with the 15° angle increment. An angle 

at which electrons impact the surface is a probabilistic event, and for that purpose, it is 

worthwhile to determine the effect of the incident angle of primary electrons on the SEY of 

niobium. In order to describe the effects of plasma on different cavity surfaces found within 

cavities, two groups of samples were used. All samples were made from cavity grade niobium, 

but one group included a welded joint across its surface since it was shown that inside the 

niobium SRF cavity electromagnetic field magnitudes were significant in close proximity to the 

welded joints. Both groups of samples were exposed to nitrogen (N2) and a mixture of argon 

with oxygen (Ar/O2) plasma operating at 50 mTorr pressure, since the reduction of SEY after 

plasma processing was reported [3]. 

This dissertation is organized as follows. Chapter 1 provides a brief introduction to the 

presented work, including the motivation for the research. Chapter 2 describes the research 

problem in detail and discusses possible solution approaches. Chapter 3 provides an overview of 

the relevant literature which includes the measurement techniques, numerical models, commonly 
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used methods for reducing the SEY, and available technologies for processing the SRF 

accelerating cavities. Chapter 4 presents an experimental setup and measurement procedure used 

in the study. Chapter 5 gives the results of SEY measurements before and after plasma processing 

at several incident angles of primary electrons. Finally, Chapter 6 provides the conclusions and 

recommendations for future work.  
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CHAPTER 2 

 

2 STATEMENT OF THE PROBLEM 

Cavities are a special type of resonator designed to confine the electromagnetic field and 

transfer the energy to the accelerating particles. With the development of accelerators, cavities 

have undergone significant shape alterations in order to achieve higher acceleration energies that 

cavities could sustain before a breakdown of the field due to the limiting factors such as field 

emission and multipacting. Cavities have been usually made out of copper due to its good 

electrical and mechanical properties. Depending on the size of the cavity, half cells can be 

fabricated either by deep drawing for smaller cavities or spinning for larger cavities. To assemble 

a multi-cell cavity, number of half cells are electron beam welded at the iris and the equator 

edges (Fig. 2.1). After fabrication, multi-cell cavity is mechanically tuned to the required 

frequency, and stiffening rings are usually added to prevent detuning. 

 

 

 

 

Fig. 2.1  End section of a multi-cell cavity showing iris weld, equator weld, and stiffening ring 

locations [4]. 

Equator weld 

Iris weld 

Stiffening ring 
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Accelerating gradients of the niobium SRF cavities are currently in the range of 25-30 

MV/m. The theoretical acceleration limit of 50-60 MV/m [4] indicates that further improvement 

of cavity surface processing techniques could significantly increase the performance of the 

accelerators. Even though currently used processing techniques have proved to be efficient in 

removing the surface layers of niobium, the theoretical limit of accelerating field is yet to be 

achieved. This indicates that alternative methods of processing should be considered to push this 

boundary further. Recently developed method for plasma processing of SRF cavities [2] might 

lead to a technique that can further improve the accelerating gradient. However, with the 

advancement to higher accelerating gradients, various limiting factors, such as multipacting and 

field emission, were observed. Both of these two limiting factors are responsible for the 

formation of free electrons inside the cavity. Furthermore, the transfer of energy between the free 

electrons and the cavity wall could lead to a local temperature increase and formation of normal 

conducting areas on the superconducting cavity surface leading to further energy losses due to 

increased resistivity.  

In this work, the effects of plasma processing of inner surfaces of niobium SRF cavities and 

subsequent limitation factors were studied. Specifically, one of the parameters affecting the 

formation of free particles is the secondary electron emission, which is related to the condition of 

the cavity surface. Furthermore, as a consequence of the cavity design and required welding 

procedure, there are several welded locations on the cavity which are located near the areas of 

significant electrical and magnetic field intensities. These distinct welded areas on the cavity 

may affect SEY magnitude compared to the rest of the cavity. An experimental setup capable of 

measuring the SEY of niobium surface at different incident angles of impacting electrons was 
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developed. In addition, the effect of N2 and Ar/O2 plasma on SEY magnitude of all characteristic 

surfaces located on cavity wall was measured on samples made from cavity grade niobium. 

Prior to the discovery of superconductivity [5], accelerators operated at room temperature 

at which there were significant power losses due to surface resistance of the cavity walls. 

Significant reduction in resistivity in superconducting state provided the means to reduce the 

field losses caused by resistivity of copper cavities. The highest critical temperature for 

superconductivity (Tc) in pure elements was measured in niobium. This made niobium the best 

material to replace the copper for cavity fabrication. However, any impurity present in the 

niobium could potentially be the location of normal conducting region, which would cause 

power losses due to local increase in resistivity. Since the purity of material is essential for 

operation below the critical temperature, niobium purification technology has improved 

significantly since it was first used for fabrication of cavities. The measure of purity used in 

superconducting materials for cavity production is Residual Resistivity Ratio (RRR). This is the 

ratio of resistivity at 300 K and just above Tc, which for niobium is 9.3 K. Impurities usually 

found in cavities have a critical temperature below that of niobium and potentially could create 

normal conducting areas which increase the power losses. RRR value of 300 is the typical purity 

level of niobium used in fabrication of cavities. 

2.1 Performance of accelerating cavities 

Charged particles accelerate by receiving energy from the electric field confined in the 

accelerator cavities. Acceleration gradient (the axial electric field) is measured in MV/m and can 

be calculated as 

 
d

V
E acc

acc  , (2.1) 
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where Vacc is accelerating voltage and d is the length of cavity. Quality measure of accelerator 

cavity is called an Intrinsic Quality Factor (Q factor). Q factor is given by 

 
cP

U
Q





0 , (2.2) 

 

where ω is angular resonant frequency of the cavity, U is the energy stored by electromagnetic 

field, and Pc is dissipated power. 

Every fabricated cavity, single- or multi-cell, is tested by gradually increasing the 

accelerating field and measuring the Q factor until the field breakdown occurs. Electric field 

achieved before the breakdown is the maximum that cavity can transfer to the travelling bunch of 

particles. Typical Q curve as a function of the accelerating gradient for niobium cavity is shown 

in Fig. 2.2. 

 

 

 

 

Fig. 2.2  Typical Q factor curve of a multi-cell niobium cavity [4]. 
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Increasing the field magnitude that cavities have to contain brought to attention several 

limiting factors that had to be resolved in order to reach the design goals. Two of the most 

serious limiting factors that occur in cavities are multipacting and field emissions. 

Multipacting is a resonant phenomenon usually occurring in radiofrequency (rf) structures 

that leads to an increase in number of electrons emitted from the surface. The phenomenon was 

first described by P. T. Farnsworth in [6] and the term multipacting was coined from multiple 

impacting describing the behavior of free electrons that are close to surface in an rf field. Two 

conditions have to be met in order for multipacting to occur. The first condition is the 

synchronized electron movement in an rf field. The second condition requires the surface to 

allow electron release due to SEE phenomenon. Synchronization can occur in two specific cases 

called One Point and Two Point multipacting. 

One Point multipacting occurs in the region where the magnetic field is close to uniform 

and the electric field has normal component of some value that determines the electron impact 

energy during an rf cycle [7]. Specifically, an electron leaves the surface at the beginning of an rf 

cycle, during which it follows a certain trajectory only to return to its point of origin at the end of 

an rf cycle. During flight, the electron gains energy and then transfers it to the surface upon 

return impact. One Point multipacting was a serious limiting factor for pillbox cavities which 

was reduced by changing their shape to elliptical. Removal of sharp corners from the cavity 

geometry reduced significantly the number of locations where One Point multipacting could 

occur. 

Two Point multipacting is usually a characteristic of elliptical cavities and can originate in 

the area around the equator [8]. In this case an electron leaves the surface and under the influence 

of an rf field travels to a point which is symmetric to the electron origin across the equator. This 
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type of multipacting is very common in elliptical cavities but most of the emitting spots can be 

mitigated with surface treatment, such are buffered chemical polishing or heat treatment. 

Emission of electrons from sharp tips on the surface due to the effect of the applied electric 

field is called field emission. Field emission is the limiting factor that occurs at high fields in 

superconducting cavities. The source of an increased field emission can be any type of impurity 

on the surface of the cavity, embedded during cavity fabrication or handling. It can also be due to 

a base metal protrusion, created during forming and welding or any type of surface treatment. 

The protrusion acts like an antenna which under the effect of high electric field, constantly 

releases electrons inside the cavity. When a steep decrease in Q factor at high electric field is 

observed, it usually signals presence of a significant increase in surface emitted electrons. 

Released electrons can be accelerated by cavity fields and upon return to the surface could 

transfer gained energy into heat, x-rays, and more electrons due to SEE. 

The best approach to reduce field emission is to fabricate as clean surface as possible. To 

achieve this, a number of different cleaning and handling procedures have been developed [4]. 

Currently, two main cleaning procedures are used, Buffered Chemical Polishing (BCP) and 

Electro-Chemical Polishing (ECP). To complement the effect of cleaning other procedures have 

been developed and used that precede or follow BCP or ECP. Baking of cavities and High 

Pressure Rinsing (HPR) are among commonly used supplemental cleaning techniques. In 

addition, handling and assembly of cavities is performed in clean rooms. Implementation of 

these techniques has given good results and today nine cell cavities regularly achieve 

acceleration of 25 MV/m before field breakdown. However, there were cases where cavities 

suffer breakdown sooner and upon inspection, some low field emitter was regularly discovered. 

Additional cleaning was usually able to fix this problem and improve the accelerating gradient. 
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Sometimes the cleaning has to be done in-situ and for that purpose high power processing 

is usually used [9]. When a field emitter is discovered, an excess of rf power is delivered into the 

cavity to process it. The high field current emitted around the impurity ionizes the gas around it 

and creates a plasma discharge that removes the impurity from the surface. Following the change 

in Q factor with an electric field increase gives an insight into the overall state of the surface. In 

order to find the specific location of field emission or any type of losses on the cavity, surface 

temperature measurement is an accurate technique of determining the position of local heat 

sources [9]. Multiple thermometers are attached to the cavity in order to measure the temperature 

distribution across the surface. To obtain the accurate measurements, good contact between the 

surfaces of thermometer and the cavity has to be maintained. Temperature gradient field obtained 

will provide the location of field emitting spots on the cavity surface (Fig. 2.3). Once the location 

of field emitters are known, the cavity can be dissected and examined to their source. In Fig. 2.3, 

micrograph taken by Scanning Electron Microscope (SEM) revealed a copper particle imbedded 

on the surface [9]. 

 

 

 

 

Fig. 2.3  Temperature gradient of a cavity with a local temperature increase at 1, 2, 3, and 4 [10]. 
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Energy transfer from electrons to cavity surface can cause local transition from 

superconducting to normal conducting state if the field emission is significant. Resistivity grows 

exponentially with the temperature and as a consequence, normal conducting patches now 

become the locations for further power dissipation on the surface which eventually leads to the 

“quenching” of the cavity. A quenching condition ensues when the cavity is no longer able to 

sustain the stable electric field. 

The most severe limiting factor in cavities is field emission which becomes significant at 

high accelerating gradients when Q factor of the cavity starts to decrease. Regardless of how well 

the cavity is fabricated and treated with current processes, when a sufficiently high electric field 

is applied, field emission will cause the breakdown and quenching of cavities. Even though the 

current multi-cell cavities now regularly achieve 25 MV/m gradients and single cell experimental 

cavities have achieved gradients of up to 40 MV/m [11] that is still below the theoretical 

maximum for niobium, which is around 50 MeV/m [12]. 

2.2 Secondary electron emission 

As the accelerating gradient of cavities continue to increase towards theoretical limit, both 

multipacting and field emission will become significant inside the cavity. These physical 

processes increase the number of the free electrons inside the cavity thus limiting the 

performance of the accelerating cavities. Free electrons released from field emitters and 

multipacting locations absorb the energy during an rf cycle and impact the surface releasing the 

additional electrons. The electron build-up ultimately causes the breakdown of the field inside 

the cavity. Free electrons that eventually impact the surface, transfer part of the energy to the 

surface. This excess energy can cause the release of additional electrons through Secondary 
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Electron Emission (SEE) process. To reach the theoretical accelerating gradient it is necessary to 

reduce the secondary electron emission from the cavity surface to the lowest possible value. 

Secondary electron emission is a process during which additional free electrons are formed 

and as such it is relevant for the cavity and accelerator operation. It was first discovered by 

Austin and Starke [13] in 1902 when they observed that exposure of metal surface to electron 

beam initiated release of more electrons than it was receiving. Higher predisposition of surface to 

SEE promotes the release of free electrons leading to early field breakdown in the cavity. When 

electrons of certain energy level hit the surface of a solid they can penetrate the surface potential 

barrier and transfer energy in a series of collisions with atoms of the surface. These impacting 

electrons are called primary electrons. During the collision process, primary electrons can 

transfer enough energy to the surface causing the release of additional electrons that could leave 

the surface of the solid under certain conditions. The electrons leaving surface are called 

secondary electrons. Once secondary electrons leave the surface, they absorb the energy during 

an rf cycle and impact the surface. Consequently, this creates an avalanche effect that eventually 

breaks down the accelerating field inside the cavity. To quantify the emission of secondary 

electrons, a magnitude defined as a ratio of the number of secondary electrons over the number 

of primary electrons was introduced and named a Secondary Electron Yield (SEY). A SEY 

magnitude larger than 1 indicates the increase in the number of free electrons. The cavity wall 

with a high SEY magnitude will achieve quenching conditions sooner. 
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Fig. 2.4  Typical SEY (δ) curve as a function of primary electron beam energy (E0) with 

characteristic points. 

 

 

 

Experimental measurements done in the past have shown that there is a typical curve that 

describes the SEY (δ) as a function of primary energy of the impacting electrons (E0). A typical 

SEY curve has three characteristic points that are of interest for any metal surface (Fig. 2.4). The 

first crossover point is a point where SEY equals 1 (δ = 1) at the corresponding energy E0I, next is 

the point of maximum yield δmax which occurs at E0max
 energy, and the second crossover point is 

where δ = 1 again for E0II energy. If the maximum SEY has a value larger than 1 then the number 

of electrons leaving the surface will be larger than number of electrons impacting it. For 

accelerator cavities, the increasing number of free electrons absorb increasing amounts of energy 

intended for the accelerated particles. When the free electrons start absorbing energy intended for 

the accelerated particles, the reduction of the Q factor is observed. 
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Fig. 2.5  Secondary electron energy distribution for stainless steel and E0=300 eV at normal 

incident angle [14]. 

 

 

 

Furthermore, electrons leaving the surface of a cavity wall have an energy distribution in 

the range from 0 eV to the energy of the primary electrons (E0). A typical energy distribution 

curve (EDC) has three characteristic sections that describe the energy levels of the electrons 

leaving the surface (Fig. 2.5). The first section is a peak in the lower energies that represents the 

quantity of true secondary electrons. Electrons that received the energy from the collision with 

the primary electrons and that consequently left the surface of the solid are called true secondary 

electrons. True secondary electrons are considered to have the energy levels in the range between 

0 eV and 50 eV [15]. The second section of the EDC is the flat part of the curve from 50 eV to 

the energy of the primary electrons. Electrons in that energy range are considered to be 

inelastically reflected primary electrons. These electrons impact the surface, transfer part of their 

energy and then leave the surface. The third section of the curve is the sharp peak that is formed 

at the energy level of the primary electrons and these electrons are called elastically reflected 

primary electrons. 
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Fig. 2.6  SEY (δ) as a function of E0 and increase in incident angle (θ) measured on a 

molybdenum sample [16]. 

 

 

 

The SEY is not only a function of the energy of primary electrons but also a function of the 

incident angle (θ) of primary electrons. The angle between impacting electrons and normal to the 

surface is called an incident angle of the primary electrons. Experimental results have shown that 

the overall yield increases with the increase in the incident angle [16]. Furthermore, the energy 

level at which maximum yield occurs was increased with the incident angle (Fig. 2.6). 

Determining the SEY curves as a function of incident angles was needed, since the incident angle 

of primary electron impact on the surface of the cavity is a probabilistic event. 

2.3 The effect of cavity microstructures on SEY 

Half-cells of a cavity are electron beam welded at equator and iris edges. During welding 

procedure, significant amount of heat was induced in niobium. It was reported that SEY was a 

function of magnitude and duration of the heat treatment [17]. Consequently, the welding 
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procedure might change the SEY characteristic in the weld area compared to the SEY of the 

surface not affected by welding. 

After welding, three characteristic zones in and around the weld are differentiated, namely 

the weld zone (WZ), the heat affected zone (HAZ), and the base metal (BASE). Differences 

between the zones can be observed in their microstructure. 

 

 

 

 

  
(a)          (b) 

Fig. 2.7  Distribution of (a) electric and (b) magnetic field in a SRF elliptical cavity. 

 

 

 

In addition to changes in microstructure, high electric and maximum magnetic fields are 

present near the welded areas of the cavity (Fig. 2.7). Different surface states in the weld areas of 

the cavity combined with high intensity fields may create specific conditions that affect the SEY 

property of the material. An extensive literature review indicates that no such measurement has 

been made thus far. 

2.4 Scope of the dissertation 

In this work, the developed experimental setup has been used to test the SEY of niobium 

samples under various conditions. Two groups of samples were used that represent the 

Location of 

iris weld 

Location of 

equator weld 
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characteristic surfaces found on the cavity walls. The first group of samples was made of cavity 

grade niobium. The second group of niobium samples was made from the same material but it 

included the weld joint, simulating the surface near equator and iris of the cavity. Welded 

samples were made using the same welding parameters used for cavity fabrication to simulate 

the surface conditions. Furthermore, the experimental setup allows the measurement of angular 

dependence of the SEY. Since the incident angle has a large impact on SEY, the range of incident 

angles for which the measurements were possible was very important. 

Both groups of samples were exposed to plasma and all measurements were repeated to 

determine the effect on the niobium surface. Recent work has provided the method of applying 

plasma as a technique for post fabrication treatment of cavities [2]. The experimental setup 

developed by J. Upadhyay et al. [2] was able to remove the surface layers of niobium from 

curved samples by processing them in a plasma created in argon/chlorine gas mixture. Using the 

described method, plasma processing of the curved surfaces of SRF cavities is possible with 

gases commonly used for removing the non-metallic surface layers of contamination. Secondary 

electron yield on samples with characteristic microstructures present in SRF cavities were 

determined before and after plasma processing in nitrogen and argon/oxygen gases. 

The work presented here provides a comprehensive work on the SEY of niobium used in 

accelerating cavity fabrication. The work provides results for characteristic locations, different 

incident angles of primary electrons, as well as the effect of plasma processing on a niobium 

surface.  
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CHAPTER 3 

 

3 LITERATURE REVIEW 

Since the formulation of a secondary electron emission process, there has been an ongoing 

effort to describe the behavior of different surfaces when exposed to the impacting electrons 

[15]. To quantify the SEE, a magnitude called the secondary electron yield was defined as the 

ratio of emitted and impacting electrons [18]. The aim of this chapter is to provide an overview 

of the secondary electron emission topic and its significance related to the particle accelerator 

application. The chapter is divided into sections describing the available SEY measuring 

techniques, derived numerical models of SEY, most commonly used techniques for reducing the 

SEY, and an overview of the methods used for processing of niobium SRF cavities. 

3.1 SEY measurement techniques 

Secondary electron yield is defined as the ratio of the emitted electrons current and the 

impacting electrons current. The free electrons focused into a beam impact the surface of the 

sample, triggering the release of the electrons. The current of the electrons that were emitted by 

the surface can be measured with two different approaches. The first, is to measure the current on 

the sample, to determine the quantity of impacting and emitted electron currents. The current of 

the emitted electrons can be determined as a difference between the current of the sample and the 

current of the electron beam impacting the sample. In the second method, a current is measured 

on the collector that completely envelopes the sample, which comes from the absorbed electrons 

emitted from the surface of the sample. Each of the methods has specific advantages over the 

other, and the choice between the methods is usually based on the experimental goals, but can 
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also depend on the available space at the measurement location for in-situ applications. The 

details of both SEY measurement techniques with corresponding advantages and limitations are 

discussed below. 

3.1.1 Sample current method 

When a sample current method is used, the SEY is determined by measuring the sample 

current and the primary electron beam current. The relation between the SEY (δ), the sample 

current (is), and the primary electron beam current (ip) is defined as 
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Fig. 3.1  Schematic of the sample current method [19]. 

 

 

 

The current of the emitted electrons (iSE) is determined indirectly as the difference between 

the electron beam and the sample currents. Specifically, the sample current is measured by 
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positioning the sample in front of the electron gun at normal incidence angle of a primary 

electron beam. The sample should be biased to a steady negative potential to repel emitted 

electrons leaving the surface and tertiary electrons that are formed on the surrounding boundaries 

of the experimental setup [20-22]. Tertiary electrons are formed when the electrons emitted from 

the surface of the sample impact the surrounding walls of the experimental setup. By negatively 

biasing the sample, an erroneous current reading due to the tertiary electrons returning to the 

surface is avoided. A simple schematic of the sample current method is shown in Fig. 3.1. 

The current of a primary electron beam can be measured with two different methods. In the 

first method, the sample located in front of the electron gun is biased at a high positive potential 

to retain all the electrons that are leaving the surface [21,22]. With the sample at high positive 

potential, the current measured on the sample is considered the primary beam current. However, 

not all electrons can be captured if the energy of the primary electron beam is larger than the bias 

of the sample. If the energy of the elastically and inelastically reflected electrons is high enough 

it cannot be retained by the positively biased surface. All electrons with the energy levels higher 

than the positive bias can leave the surface of the sample, thus creating a discrepancy between 

the actual and measured beam current. In the second method, a Faraday cup with a small aperture 

can be placed in front of the electron gun to determine the beam current. The aperture is centered 

to allow the flow of electrons inside the Faraday cup, while the aperture size allows only few 

electrons to leave. The current measured in the Faraday cup is considered the primary electron 

beam current. Maintaining the current magnitude of the electron beam across the energy range of 

the primary electrons is one of the parameters that are needed to be controlled during the SEY 

measurement. It is necessary to measure the beam current at each energy level of primary 
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electrons, since keeping it uniform can be challenging [22,23]. This significantly increases the 

measurement time for a large number of primary electron beam energy values. 

During the SEY measurement, the sample potential was set to a negative value to reflect the 

electrons returning to the surface of the sample. This ensures that the current measured on the 

sample is only due to the electrons leaving the surface. However, the negative potential of the 

tilted sample becomes deflective thus not allowing the measurement of SEY at different incident 

angles of the primary electrons. The negative potential on the inclined sample can change the 

spot where the primary electrons are impacting the surface. Low energy primary electrons can be 

deflected enough to completely evade the surface of the sample. 

3.1.2 Collector current method 

In the collector current method, the SEY is determined by measuring the sample current (is) 

and collector current (ic). The relation between the SEY, sample current and the collector current 

is defined as 

 
p

c

sc

c

i

i

ii

i



 . (3.2) 

 

Primary electrons pass through the aperture on the collector and impact the surface of the 

sample. Electrons emitted from the surface are captured by the collector. In order to retain the 

electrons that reach the surface of the collector, a positive potential is applied to the collector 

[24]. The sample is usually grounded or kept at a very low negative potential to make sure that 

emitted electrons leave the surface. The primary electron beam current is indirectly obtained as 

the sum of the measured collector and sample currents. The SEY curve is determined by 

increasing the energy of the primary electrons and recording the measured currents on the 

collector and the sample. The collector current method can be used to obtain the EDC of the 

reflected electrons by applying a retarding potential on the collector and incrementally reducing 
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it and recording the current values at the sample and collector. The SEY, at different incident 

angles, can be determined based on the assumption that all the emitted electrons can be captured. 

The simple schematic of the collector current method is shown in Fig. 3.2. 

 

 

 

 

Fig. 3.2  Schematic of the collector current method [24]. 

 

 

 

Even though the measurements of the sample, collector, and the beam currents may appear 

straightforward, accurate measurement can still be affected by technical difficulties. Some of 

these difficulties are discussed in [25], while the details of difficulties encountered in measuring 

SEY using sample current method along with potential mitigation techniques are discussed in 

[26]. 

3.2 Numerical models of SEY 

High dependence of the SEY on the surface condition is the cause of limited reproducibility 

observed in the experimental results. The majority of experimental setups are capable of 

measuring SEY only at the normal incident angle of primary electrons. The function of SEY at 

normal incidence of primary electrons is frequently described by a semi-empirical law [27], and 

sometimes is modeled by completely empirical functions [28]. A strong dependence of SEY 
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results on the incident angle of primary electrons should not be overlooked. An increase in the 

incident angle of primary electrons causes the increase in the maximum SEY value as well as the 

energy at which the maximum yield occurs. Ever since the formulation of SEE, numerous 

models have been developed to describe the experimental data. Several models that describe the 

SEY at normal and other than normal incident angles have been presented [27-30]. 

The most commonly used equations that describe the SEY for normal incidence of primary 

electrons were derived from a semi-empirical law of SEY [27,29]. In these two reports, a similar 

function was derived, but with different parameters, which were obtained based on the 

experimental results, Eqs. (3.3) and (3.4), 
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An example of an empirical model of SEY is described in Ref. [30], 
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Another example of an empirical model is given in Ref. [28], 
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where p>1 is a fit parameter. The current models are functions of maximum SEY, energy of 

primary electrons at which the maximum SEY is observed, and fitting parameters. The 
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independent variable in these models is always the energy of the primary electrons. The above 

models can be fitted to experimental data by adjusting the fitting parameters and applying the 

measured maximum SEY and corresponding energy. The accuracy of the presented models in 

Eqs. (3.3-3.6) was tested by comparing it to the SEY results for niobium (Fig. 3.3). The 

numerical parameters of each equation are kept as they were derived, except for the Eq. (3.6) 

where the best fit was obtained for the fit parameter p=1.434. Input parameters of the equation 

were maximum SEY and energy at which maximum yield occurred taken from [3], for niobium 

samples after BCP. It was observed that the best fit was obtained from Eqs. (3.3) and (3.5). 

 

 

 

 

Fig. 3.3  SEY as a function of E0, showing the agreement of different models represented by Eqs. 

(3.3-3.6) with the experimental results of niobium samples [3]. 

 

 

 

The effect of the incident angle of primary electrons on the SEY was observed early in the 

experimental studies of SEE [31]. It was observed that SEY values increase with the increase of 

the incident angle of primary electrons. In addition, it was observed that the energy level at 
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which the maximum SEY was detected increased as well (Fig. 2.6). The overall increase in SEY 

values at all energies can be related to the depth at which the secondary electrons are formed 

[32]. The most commonly used assumption is that if the primary electron of a certain energy at 

normal incidence stops at a depth Xm from the surface, then the same electron impacting the 

surface at an angle θ will stop at Xm cos(θ) depth (Fig. 3.4). Secondary electrons formed along 

the path of the incident primary electrons are closer to the surface and have a higher probability 

to leave the substrate, which leads to the increase in SEY. 

 

 

 

 

Fig. 3.4  Schematic representation of the commonly assumed model of the secondary electron 

formation depth as function of incident angle [32]. 

 

 

 

There are several approaches commonly used to model the effect of an incident angle of 

primary electrons on SEY. The models formulated in [31] and [27] describe the increase of SEY 

with the increase in incident angle of primary electrons. However, the increase in energy level at 

which the maximum yield is observed, is not accounted for. Vaughan [30] suggested that better 

fitting to the experimental results might be obtained if maximum SEY and corresponding energy 
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of primary electrons are adjusted first by empirical correction formulas, and then calculating the 

SEY curve based on these corrected values. 

Currently used SEY models are based on either semi-empirical or entirely empirical 

formulation. Semi-empirical models attempt to find a correlation between the properties of 

materials and SEY by performing extensive measurements on the large number of different 

elements and compounds. The analysis of the experimental data has provided a database of 

parameters for modeling the SEY of large number of elemental surfaces and compounds [27,29]. 

However, due to the high influence of the surface layer composition, the measured SEY can 

significantly differ from the database results. 

3.3 Techniques for reducing the SEY 

Formulating the efficient techniques for controlling the SEY has been a topic of research 

ever since the discovery of secondary electron emission. Over the years, several methods were 

developed for applications in accelerators and the aim of each one was the reduction of SEY 

magnitude [3,17,33,34]. The methods were formulated in order to reduce the formation of free 

electrons inside of the beam tubes, waveguides, and accelerating cavities, which always have a 

detrimental effect on the traveling beam and pressure level inside the accelerator. In this section, 

several techniques that are currently used are presented and their effect on SEY is described. 

Described techniques include thin film deposition, heat treatment, electron beam 

irradiation, and plasma processing. However, due to the specific requirements of the accelerating 

SRF cavity, some of these methods are not applicable to the surface of the cavity while the others 

would require adaptation and special tools which would make them inefficient. 
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3.3.1 Influence of thin film deposition on SEY 

Thin film deposition method is a process in which a thin film of materials is deposited on 

the substrate, where a thin film is considered to be a layer of material ranging from less than a 

nanometer to several micrometers in thickness. The purpose of thin films formed by either 

chemical or physical deposition mechanisms is to change the surface properties of the base 

material. Thin film deposition method has received considerable attention in various industries 

such as metal, pharmaceutical, and semiconductor. Deposition technology was successfully 

applied to flat surface samples of various accelerator components. The tests of the effect of 

various thin films on SEY was number of researchers [33,35,36]. Although several surface 

coatings showed the capability to reduce the SEY of the base, currently this technology is not 

applicable to accelerating cavities. The difficulties arise from the complex shape of the cavity 

which makes uniform deposition of thin films challenging, which can affect superconducting 

state across the surface of the cavity. 

 

 

 

 

Fig. 3.5  SEY as a function of E0, showing the effect of 100 nm carbon thin film deposited on 

stainless steel base [33]. 
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It was determined that carbon has a low value of maximum SEY [29]. Thin carbon film of 

approximately 100 nm has been deposited on stainless steel base and the positive effect on SEY 

was determined [33]. A carbon deposited surface exhibited a significant decrease in SEY 

compared to the surface of uncoated stainless steel (Fig. 3.5). The exhibited decrease in SEY 

magnitude indicates that the primary electrons of energy range up to 1800 eV penetrate the 

surface less than 100 nm in depth. In another test, using a copper as a base, a carbon thin film of 

20 nm thickness was deposited on the surface [35]. The results indicate that the deposited layer 

of carbon reduces the SEY of base copper surface. However, the reduction in the maximum value 

of SEY was not significant leading to a conclusion that part of the primary electrons were still 

able to go through the 20 nm of carbon thin film and reach the copper substrate (Fig. 3.6). 

 

 

 

 

Fig. 3.6  SEY as a function of E0, showing the effect of 20 nm carbon thin film deposited on the 

copper base [35]. 

 

 

 

The effect of niobium nitrides and carbides deposited on a niobium base on SEY has been 

examined [36] and the results were presented in Fig. 3.7. The surface of the niobium samples 

used in those tests were cleaned by ion sputtering. Sputtering is a process in which gas ions 
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impact the surface and remove the particles embedded on the surface. A sputter cleaned surface 

of niobium was used as a substrate for deposition of niobium nitride and carbide thin films of 14 

nm thickness. When compared to the SEY of sputter cleaned surface of niobium, surfaces with 

thin films of niobium nitrides and carbides have shown an increase in SEY (Fig. 3.7 (a)). 

Additionally, after the SEY measurements were performed, the samples were exposed to air at 

atmospheric pressure for one hour. Following the exposure, measurements were repeated and the 

increase in SEY was observed on all samples (Fig. 3.7 (b)). It can be concluded that surfaces 

cleaned or deposited in the vacuum were reacting with the air during exposure forming the layer 

of oxides on the surface. After air exposure, SEY of the examined surfaces was reduced by 

electron beam irradiation (Fig. 3.7 (c)). 

 

 

 

 

Fig. 3.7  SEY as a function of E0, showing the effect of 14 nm of NbN and NbC deposited on (a) 

clean Nb sample. SEY increases (b) after air exposure, which was reduced with (c) the electron 

beam irradiation [36]. 
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The thin film deposition technology showed the capability of reducing the SEY of the 

surface when low yield materials were used and sufficient thickness of the layer was formed. 

However, there are several difficulties which prevents the application of this technology to 

accelerating cavities. First, the complex shape of the cavity makes uniform deposition of the thin 

films challenging. Second, most of low yield materials used for thin films either cannot be 

superconductors or have a lower critical temperature of superconductivity than niobium. These 

difficulties have limited the use of thin film deposition for the purpose of SEY reduction to 

normal conducting components of accelerators, such are beam tubes and waveguides. 

3.3.2 Influence of heat treatment on SEY 

During the exposure to elevated temperatures, gas impurities trapped on the surface of the 

material start slowly evaporating. The effect of the heat treatment on SEY of the 1.5 μm thin film 

of niobium deposited on copper base was reported in Ref. [17]. First, the SEY was measured after 

one hour of heat treatment at increasing temperatures (Fig. 3.8 (a)). The reduction of the SEY 

was first observed after the temperature was raised to 120 °C. Further reduction in SEY was 

observed with the increase in temperature. The secondary electron yield was determined at 

elevated temperatures of the sample, except for the first and last measurement which were 

performed at the ambient temperature of the sample. For the last measurement, sample was kept 

at 350 °C for one hour and then left to cooldown for six hours before performing the SEY 

measurement. 

A reduced SEY indicates that the evaporated gas impurities were not reabsorbed by the 

surface after the sample returned to the room temperature since they were probably removed by 

the vacuum system. Another sample was baked at 150 °C for 26 hours (Fig. 3.8 (b)). During the 

heat treatment, the SEY was measured after 10, 50, and 100 minutes, 4 hours, and 26 hours. After 
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baking the sample for 4 hours there was no further reduction in the measured SEY. Secondary 

electron yield continued to decrease with increase4 in heat treatment temperature, reaching the 

evaporating temperature of impurities still present on the surface of the sample. An additional 

beneficial effect of the heat treatment can also be observed in the SEY measured on niobium 

sample [37]. The secondary electron yield was measured at 25 points on 25 mm2 area before and 

after annealing at 700 °C, indicating that heat treatment also contributed to the uniformity of SEY 

magnitudes across the examined surface. The observed uniformity of SEY could have occurred 

due to the redistribution of surface oxides during and removal of localized gas impurities during 

the annealing process. 

 

 

 

 
(a)             (b) 

Fig. 3.8  SEY as a function of E0 of niobium thin layer deposited on copper base, showing the 

effect of heat treatment at (a) different temperatures and (b) different duration at 150 °C [17]. 
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In an effort to reduce detrimental effects that an electron cloud has on a beam in beam 

tubes, non-evaporable getter (NEG) films have been developed and tested for secondary electron 

emission [38]. Coatings of 1 μm thickness of TiZrV and TiZr have been deposited on a clean 

copper base by magnetron sputtering. Samples with deposited films have been exposed to air at 

atmospheric pressure for 24 hours before the first SEY measurement was performed. During the 

exposure to elevated temperatures, oxygen contained in the surface oxides diffuses into the base 

material, which is a process known as activation of NEG films. Activation of NEG films was 

performed in several steps at different temperatures, each maintained for 2 hours (Fig. 3.9). With 

the increase in activation temperature, the higher quantities of oxygen were diffused into the 

copper base leading to the reduction of SEY magnitude, saturating at approximately 250 °C. 

After the exposure to the air, oxides were forming again on the NEG surface. The quality of the 

NEG surface is measured by the high oxygen solubility limit that would allow multiple 

activation-air exposure cycles [39]. 

 

 

 

 
(a)             (b) 

Fig. 3.9  SEY as a function of E0, at different activation temperatures of (a) TiZrV and (b) TiZr 

thin films of 1 μm thickness deposited on a copper base [38]. 
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The results indicate that the high temperature heat treatment is an effective method to 

remove the evaporable gas impurities from the surface or diffuse them into the material in the 

case of NEG coatings, consequently reducing the SEY. It is important to note that all reported 

results were performed in a vacuum, without exposing the surface to air at atmospheric pressure. 

Clean surfaces have reacted with the air at atmospheric pressure forming oxides and leading to 

the elevated values of SEY [3]. 

3.3.3 Influence of electron beam irradiation on SEY 

The growth of an electron cloud formed in accelerator beam pipe is attributed mainly to 

synchrotron radiation [40,41]. If the number of free electrons becomes significant, it can degrade 

the particle beam, or cause an increase in pressure inside the beam tube. In order to mitigate the 

creation of an electron cloud, studies [34,42] have measured the effect of the prolonged exposure 

of the surface to the electron beam. For example, the copper samples were exposed to an electron 

beam of 500 eV of primary energy while the beam current was in the order of 1 to 5 μA [34]. 

The surface area of the sample exposed to the electron beam irradiation was 3x3 mm. SEY was 

measured on the different areas of the sample (Fig. 3.10). First, the SEY measurement was 

performed on the non-irradiated surface, and the maximum yield was determined to be 2.1. 

Second, the SEY was measured at the periphery of the irradiated area and the maximum yield 

measured was 1.8. Third, the central part of the irradiated surface was used to measure the SEY 

and the maximum value was 1.2. Differences between the periphery of the irradiated surface and 

the center was described as the effect of Gaussian distribution of the number of electrons across 

the diameter of the electron beam. Consequently, the peripheral part of the surface received less 

electrons than the central part of the surface. 
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A similar study was performed on the aluminum sample, where a single spot of 1 mm2 was 

irradiated [42]. Energy of the primary electrons in the beam during irradiation was kept constant 

at 500 eV while the beam current was in the order of 1 to 5 μA. The maximum SEY measured 

before the irradiation was 2.7 and after irradiation it was reduced to 1.8. In both studies, the 

reduction of surface impurities and a formation of graphite layer on the irradiated surface was 

observed by x-ray photoelectron spectroscopy (XPS) [34,42]. The observed graphite layer was 

formed from the carbon present in the surface impurities. 

 

 

 

 

Fig. 3.10  SEY as a function of E0, showing the effect of irradiation by an electron beam of 500 

eV energy and 5 μA of current on copper sample [34]. 

 

 

 

The experiments were performed in vacuum and no data were presented on the reactivity of 

the surface after exposure to air at the atmospheric pressure. The formation of the graphite layer 

during the electron beam irradiation is detrimental for accelerating cavity application since 

carbon is not a superconductor. 
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3.3.4 Influence of plasma on SEY 

When superconducting technology was in the development stage for the accelerator 

cavities, plasma processing was considered as a method for SEY reduction [3]. Reduction of SEY 

was observed on niobium samples exposed to plasma of four gases (Fig. 3.11). However, due to 

the complex shape of the elliptical multi-cell cavities the effect of plasma on SEY was only 

studied on flat niobium samples. Recent developments in the technology for coaxial plasma 

processing made the topic current again [43,44]. 

 

 

 

 

Fig. 3.11  SEY as a function of E0, showing the effect of argon (Ar), nitrogen (N2), methane 

(CH4), and argon/oxygen (Ar/O2) glow discharge on niobium samples [3]. 

 

 

 

The effect of plasma processing on SEY of niobium samples has been tested for argon, 

nitrogen, methane, and a gas mixture of argon and oxygen [3]. Prior to exposing niobium 

samples to plasma, they were polished in a BCP mixture of acids. Subsequently, the SEY curve 

was measured and the maximum SEY value was determined to be 2.29. After the initial SEY 

curve was measured, samples were exposed to plasma discharges of each of the previously 
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mentioned gases. Secondary electron yield measurements were performed in-situ after plasma 

processing. A reduction in the maximum value of SEY was observed after plasma processing for 

each of the gases. The least reduction of maximum SEY (δmax=2) was observed after processing 

in methane plasma. For primary electron beam energies above 1 keV, SEY of niobium surface 

after processing in methane plasma was reduced more than for any other gas. Processing in 

methane plasma could find an application where the energy levels of impacting electrons are 

larger than 1 keV. The lowest magnitude of maximum SEY (δmax=1.09) was observed after 

processing in nitrogen plasma. Additional treatment methods were performed on the sample 

treated with nitrogen plasma. For example, after 94 hours in nitrogen at atmospheric pressure 

maximum SEY increased to 1.23. Subsequently, the sample was heat treated at 150 °C and 

exposed to air at atmospheric pressure for 48 hours and the resulting maximum SEY was 

determined to be 1.42. 

It was observed that plasma processing is an effective method to reduce the SEY of niobium 

surface. However, the presented results indicate that even after the samples were kept in nitrogen 

gas at atmospheric pressure and heat treated, the SEY of the niobium surface increased after it 

was exposed to air at atmospheric pressure. It can be concluded that formulating a more efficient 

technique for making the inert surface after plasma processing is necessary to retain the minimal 

SEY values. 

3.4 Surface processing techniques of SRF cavities 

The maximum accelerating gradient of SRF cavities is dependent on the quality of the 

surface formed after preparation. Niobium cavities currently in use can attain the accelerating 

gradient in the range of 25-35 MV/m, depending on the performed surface preparation technique. 

Maximum accelerating gradients in the SRF niobium cavities are achieved by the combination of 
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either buffered chemical polishing (BCP) or electro-chemical polishing (ECP), followed by the 

high pressure rinsing (HPR) and the heat treatment in ultra-high vacuum oven. By applying these 

methods, average accelerating gradient of the SRF cavities has been significantly improved. 

However, the absence of improvement in maximum accelerating field over the last few years 

would indicate that these surface preparation techniques might have reached their maximum 

potential. In order to reach the theoretical maximum accelerating gradient of niobium cavities, 

alternative methods of surface processing should be considered. 

This section presents details of BCP and ECP methods, the supporting surface preparation 

methods of HPR and heat treatment, and recently developed methods of plasma processing 

applied to SRF cavities. 

3.4.1 Buffered chemical polishing 

A top layer of naturally forming niobium oxide (Nb2O5) can be found on the surface of the 

cavity [45]. Additional impurities can be embedded on the surface during the fabrication 

procedure. After fabrication, impurities located on the inside surface of the cavity are most 

commonly removed by a Buffered Chemical Polishing (BCP) method. A mix of hydrofluoric 

(HF), nitric (HNO3) and phosphoric (H3PO4) acids is used to remove the surface layers of a 

cavity. Surface layer removal occurs in two repetitive steps. In the first step, hydrofluoric acid is 

used to dissolve the Nb2O5, leaving behind the surface of pure niobium. During the second step, 

nitric acid oxidizes the pure niobium surface, building the Nb2O5. By repeating the oxidation and 

dissolution of oxide on the surface a required layer of the niobium can be removed. 

The combination of HF and HNO3 acids has an etching rate of approximately 30 μm/min 

[46]. Acid reactions with the niobium surface are exothermic and the generated heat can cause 

further increase in etch rate. In addition, high quantities of hydrogen, nitrogen, and HF gases are 
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produced which can be absorbed by the niobium surface leading to reduced cavity performance. 

To reduce the etching rate and produce a smoother surface, phosphoric acid was added to the 

mix. The etching rate of the HF, HNO3, H3PO4 mix is around 1 μm/min and the average 

roughness of the surface after etching is in the order of 1 μm (Fig. 3.12). 

After BCP etching, maximum achieved accelerating gradients of a nine cell cavity are in 

the range of 25-30 MV/m indicating the limit of the method. 

 

 

 

   
(a)     (b) 

Fig. 3.12  SEM micrograph of (a) base surface of the niobium sample [46], and (b) sample with 

the equator weld area [47], after BCP etching. 

 

 

 

3.4.2 Electro-chemical polishing 

The Electro-Chemical Polishing (ECP) uses the combination of acid mix and current flow 

to remove the surface layers from niobium cavities. The most commonly used electrolyte for 

ECP is a mixture of hydrofluoric (HF) and sulfuric (H2SO4) acids. Specifically, HF acid is 

dissolving the Nb2O5, while the H2SO4 is used to reduce the etching rate of HF acid. To remove 

additional layers from the surface, the niobium has to be re-oxidized. The oxidation of the clean 

niobium surface is performed by applying the small voltage (9-15 V) to the cavity [48]. The 
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formation of oxide on the cavity surface can be monitored by decaying current oscillations. The 

oscillations represent the formation and partial reduction of the Nb2O5 layer. As the average 

oxide thickness increases, the amplitude of the current oscillations will decrease and eventually 

decay completely, indicating that the maximum thickness of the oxide layer was achieved. By 

removing the applied voltage, HF acid starts dissolving the oxide layer. By repeating this process 

a required thickness of the material can be removed.  

Electro-chemical polishing produces a much smoother surface (Fig. 3.13) when compared 

to the BCP, due to the fact that the electric field is the highest on the surface protrusions which 

are the first to be removed [46]. After ECP surface removal, maximum accelerating gradient in 

the cavities was measured in the range 30-35 MV/m. 

 

 

 

   
(a)     (b) 

Fig. 3.13  SEM micrograph of (a) base surface of the niobium sample [46], and (b) sample with 

the equator weld area [47], after ECP etching. 

 

 

 

3.4.3 Supporting processing techniques 

To achieve the maximum accelerating gradient of the cavity, a layer thickness of 

approximately 100 μm is typically removed by either BCP or ECP [4]. However, due to the 
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complex shape of the multi-cell cavity, trace amounts of acids used in BCP and ECP may remain 

on the etched surface. Removal of any residuals present after etching is performed by high 

pressure rinsing (HPR) with deionized water [49]. The water rinsing system consists of a high 

pressure water pump, spraying nozzle on a mechanical system that allows for scanning of the 

multi-cell cavity interior surface with high pressure water jets. Deionized water is circulated in a 

closed filtered system which prevents rinsed inclusions of getting deposited back on the surface. 

The HPR method has proven efficient in removing trace amounts of chemical reaction products 

present after BCP or ECP etching techniques. 

After electron beam welding of the half-cells, impurities like oxygen and carbon can be 

preferentially distributed along the weld areas of the cavity. In addition, as a result of chemical 

reactions during BCP and ECP etching, several different gases are released which can be 

absorbed by the processed surface and can have detrimental effect on the cavity performance. 

Hydrogen inclusions on the surface of the cavity may lead to the formation of niobium hydride at 

temperatures around 100 K, which can cause a significant reduction of the Q factor [46]. Heat 

treatment of the cavities in ultra-high vacuum oven at temperatures up to 1300 °C outgasses the 

dissolved hydrogen and homogenizes the distribution of oxygen and carbon across the surface of 

the cavity [49] which improves the cavity performance.  

By combining either the BCP or ECP method with HPR and heat treatment at ultra-high 

vacuum, maximum accelerating gradient of up to 30-35 MV/m can be achieved. The limits of the 

accelerating gradient are possibly due to the etching methods used. Side products of the surface 

etching are various gases created due to the chemical reaction between the applied acids and the 

surface. Even with the heat treatment in a vacuum oven with intention to evaporate gases 

diffused in the material, the limitation of the accelerating gradient is still present. To push 
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acceleration gradient closer to the theoretical limit for niobium, alternative surface treatment 

methods need to be developed. 

3.4.4 Plasma processing of SRF cavities 

As an alternative to BCP and ECP methods for SRF cavity surface preparation, plasma 

processing has made substantial progress in both etching and cleaning techniques. Further 

improvement of the accelerating field magnitude that can be efficiently maintained in the 

accelerating cavity must be prepared by a process that removes the impurities and reduces the 

roughness from the inner surfaces. Recently, two research groups have reported their progress in 

the application of plasma processing techniques for accelerating cavities. The first group focused 

on developing the experimental setup that could possibly replace the BCP and ECP methods in 

surface etching of the niobium SRF cavity [2]. They reported using the ionized Ar/Cl2 gas 

mixture to remove significant quantities of niobium from ring type samples. The second group 

focused on reducing the field emission and multipacting of the niobium SRF cavities by 

employing the plasma created in Ne/O2 gas mixture to improve the work function of the material 

surface [44]. The results from both groups are presented below. 

Upadhyay et al. [2] recently developed experimental setup that employs an rf capacitively 

coupled plasma formed in Ar/Cl2 gas mixture to process the inner surface of a variable diameter 

cylindrical (pill-box) cavity. Plasma was formed inside the cavity which acts as outer electrode, 

by coaxially inserting the rf powered electrode (driven electrode) and flowing the gas through the 

pill-box cavity. In order to create the reactive plasma capable of removing the material from the 

inner surface of the cavity, numerous experimental difficulties had to be overcome [50]. It was 

determined that the etch rate was a function of several parameters, namely positive DC bias of 

the driven electrode, temperature of the cavity, pressure inside the cavity, rf power, Cl2 
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concentration, and the inner electrode shape. The efficiency of the material removal from the 

surface was demonstrated on the ring type niobium samples [2,43].The final design of the 

experimental setup included the simultaneous movement of the corrugated shape electrode and 

double walled conical-shape nozzle for the processing gas delivery. Simultaneous movement 

allowed the sectional processing of the pill-box cavity as an approach to deal with variable 

diameter geometry.  

Compared to the current surface processing methods of SRF cavities, plasma etching is a 

method that is more controllable, more environment friendly and less expensive [50]. Further 

development of the plasma processing technique may provide the means of increasing the 

attainable accelerating gradient of the SRF cavities. 

Field emission was identified as the critical problem at high gradient of an accelerating 

field. Reduction of the field emission can also be achieved by increasing the work function of the 

surface [51]. Work function represents the minimum energy required to remove an electron from 

a solid to vacuum. It was reported that the field emission is highly affected by the presence of 

any type of surface inclusions [52]. At spallation neutron source (SNS), the presence of 

hydrocarbons released from the cavity surface was detected by a residual gas analyzer (RGA) 

during the warm-up cycle from cryogenic temperatures [44]. The work function value was 

measured on the hydrocarbon covered surface was lower than on Nb2O5 commonly found on the 

cavity surface. The effect of Ne/O2 plasma processing was tested as a method to improve the 

work function of the niobium surface by removing the hydrocarbon contaminates [53]. Reported 

results show a success in removing the hydrocarbon layer from surface, measured by secondary 

ion mass spectrometry (SIMS). However, SIMS measurements repeated after 15 minutes from 

plasma processing showed that the hydrocarbon layer was renewed even though the sample was 
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kept in vacuum. A depth analysis of the surface indicated the presence of additional hydrocarbon 

layers that migrated to the surface over time. To successfully remove the hydrocarbon impurities, 

plasma processing was repeated several times for an extended periods of time. Subsequent SIMS 

measurements showed a significant decrease in the hydrocarbon content over the extended 

period of time, and the measured work function on the niobium surface was increased. The effect 

of the Ne/O2 plasma processing was tested on the two multi-cell cavities. One of the cavities was 

limited by the strong field emission to 12 MV/m which was improved to 15.8 MV/m after 

plasma processing. The other cavity was limited by multipacting to 9.5 MV/m and after the 

plasma processing maximum gradient of 21.5 MV/m was achieved. Doleans et al. [44] reported 

that the magnitude of multipacting might have been reduced by two mechanisms. First, the 

increase of the work function reduced the escape probability of the secondary electrons and 

consequently reduced the SEY. Second, the removal of the top layers of high SEY materials may 

have reduced the SEY of the bulk surface. 

The effectiveness of plasma in removing the surface layers of the niobium was 

demonstrated in [50]. Currently reported results of plasma processing [44] indicate the potential 

in surpassing the currently used technologies for processing the niobium SRF cavities. In 

addition, the plasma processing technology reduces the financial and ecological cost, and offers 

improved process control when compared to acid bath methods. 
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CHAPTER 4 

 

4 EXPERIMENTAL SYSTEM 

The main goal of this work was to test the effect of plasma processing on the SEY of the 

niobium surface. In order to perform this research, a dedicated experimental setup was designed 

and built to meet the requirements of the research subject. After preliminary analysis and 

comparison of several measurement techniques, the collector current method was selected as the 

SEY measurement technique, as it allowed the constant indirect control of the primary electron 

beam current. 

This chapter is divided into four sections dealing with the following topics. The first 

section describes details of the developed experimental setup, the individual components, and 

data acquisition. In the second section, details and results of calibration measurements are given. 

The third section describes the details about measurement procedure and data analysis. In the 

end, the fourth section describes the equipment and procedure used for plasma processing of 

samples. 

4.1 Experimental setup for measuring SEY 

The experimental setup is divided into seven components: electron gun, vacuum pumps, 

sample fabrication, collector fabrication, sample stage assembly, automated sample positioning 

system, and data acquisition (Fig. 4.1). The components and the operation of the subsystems are 

presented in seven sections. First, the electron gun parameters are presented in Section 4.1.1. 

Second, the vacuum subsystem and pump operating procedure is described in Section 4.1.2. 

Third, the description of sample fabrication is given in Section 4.1.3. Fourth, the description of 
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the collector fabrication is presented in Section 4.1.4. Fifth, details about sample stage assembly 

are given in Section 4.1.5. Sixth, the description and operation of automated sample positioning 

system is given in Section 4.1.6. Seventh, the data acquisition system is described in Section 

4.1.7. Each individual experimental component must have a stable operation at the assigned 

parameters to insure the quality and comparability of the results. A photograph of the 

experimental setup is shown in Fig. 4.2. 

 

 

 

 

Fig. 4.1  Components of the SEY experimental setup. 
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Fig. 4.2  A photograph of the experimental setup for measuring SEY. 

 

 

 

4.1.1 Electron gun 

The source of primary electrons was chosen to be a commercial electron gun (Kimball 

Physics ELG-2) which was controlled and powered with the commercial power supply (Kimball 

Physics EGPS-1022E). The selection of the electron gun was based on its parameters of the 

primary electron energy range (1-2000 eV), the primary electron beam current (up to 10 μA), and 

the size of the beam cross-section (0.5-5 mm). The electron gun was controlled by a computer 

using National Instruments PCI data acquisition cards and LabView software.  

The characteristic points of the SEY curve are measured for the primary electron energies 

below 2000 eV on most pure metals [29]. The energy of the primary electrons for which the SEY 
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has a maximum value was reported to be in the range of 250-550 eV for niobium [27,29]. The 

selected electron gun had a primary electron energy range large enough to contain all 

characteristic points of the SEY reported for a clean surface of the niobium. The energy of the 

primary electrons was directly controlled by adjusting the electron energy setting in the LabView 

software. 

To avoid modifying the examined surface with the primary electron beam, the current of 

the beam should be as low as possible, with the recommended value below 2 nA [26]. 

Furthermore, the current magnitude of the electron beam was kept as uniform as possible across 

the energy range of the primary electrons to maintain the conditions of the SEY measurements. 

Primary electrons are released from the surface of the tantalum filament by applying potential 

difference across it. By adjusting the filament voltage in LabView software, the filament current 

was controlled. Due to the effect of Joule heating, electrons are released from the surface of the 

filament, which are used to form the electron beam. The final magnitude of the beam current was 

adjusted by controlling the voltages on a set of electro-optics in the electron gun. Once the 

filament starts emitting free electrons, fine tuning of beam current magnitude was adjusted by 

controlling the Grid and 1st Anode voltages in the LabView software. Grid voltage caused the 

reduction in the number of electrons leaving the surface of the filament, while the 1st Anode 

voltage increased the number of emitted free electrons. By combining the magnitudes of 

Filament, Grid, and 1st Anode voltage, a primary electron beam current up 10 μA can be 

achieved. 

Primary electron beam size was controlled by adjusting the Focus voltage setting in the 

Labview software. However, the Focus voltage values required to maintain the cross-section size 

of the electron beam for the entire energy range was also a function of Filament, Grid, and 1st 
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Anode voltages. The required Focus voltage level needed to maintain the electron beam cross-

section at different energies of the primary electrons was determined for constant values of 

Filament, Grid, and 1st Anode voltages. 

Based on the experimental requirements of energy levels, beam current magnitudes, and 

size of the electron beam cross-section, the selection of the electron gun and the power supply 

was made. 

4.1.2 Vacuum system 

Secondary electron yield measurements can only be performed at high vacuum levels and 

the developed experimental setup was able to achieve the pressure of 2·10-9 Torr. The 

manufacturer recommended minimum operating vacuum level of the electron gun is defined as 

10-7 Torr or better, to avoid damaging the filament. High levels of vacuum reduce energy 

dissipation and beam divergence of the primary electrons. To achieve the required level of 

vacuum, a pumping system of three pumps and two vacuum gauges was implemented. First, the 

scroll pump (Agilent Varian IDP-3) was used to evacuate the system starting from atmospheric 

pressure to 10-1 Torr. Second, the turbo-molecular pump (Agilent Turbo-V 301 Navigator) 

reduced the pressure down to 10-7 Torr. Third, the ion pump (Perkin Elmer TNB-X) was used to 

achieve pressure below 10-8 Torr and maintain the vacuum level during the experimental 

procedure. The first vacuum gauge (Varian FRG-700) measured the pressure levels from 

atmospheric to 10-8 Torr. The second vacuum gauge (KJLC 423 Series) was used to measure the 

pressure levels from 10-2 Torr to 10-11 Torr. Vacuum system was repeatedly able to achieve the 

base pressure of 2·10-9 Torr, which was sufficient to perform SEY measurements. During the 

electron gun operation, pressure in the vacuum chamber did not rise above 4·10-9 Torr. 
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The three pumps were used to compensate for the limitations of each individual pump. The 

required vacuum level could only be achieved by a combined operation of all pumps. For 

example, the scroll pump can only achieve the pressure of 10-1 Torr. On the other hand, the 

turbo-molecular pump can operate efficiently only with the support of the scroll pump. For that 

reason, these two pumps have been connected in a series and were then linked with the vacuum 

chamber. The ion pump can operate after the vacuum level of at least 10-6 Torr was achieved. 

In order to attain and keep as low a pressure level as possible, all surfaces inside the 

vacuum system must be clean. Impurities present inside the vacuum chamber will begin to 

evaporate at reduced pressure, limiting the maximum achievable vacuum. For example, water 

and oil require a significant amount of time to evaporate, thus extending the pump-down time. 

For that reason, all surfaces and components exposed to the vacuum were cleaned with ethanol 

and handled carefully with nitrile gloves to avoid contaminating the surface. Ethanol was used 

for cleaning since it is a fast evaporating solvent. 

Once the vacuum chamber was closed, the scroll pump was started and the maximum 

vacuum level of 10-1 Torr was achieved. At that moment, the turbo-molecular pump started 

which caused a further pressure decrease to high 10-6 Torr range. It took approximately 24 hours 

to reach this vacuum level. The pressure stabilization at this level was caused by the evaporation 

of water molecules absorbed by the surfaces from air humidity during exposure to atmosphere. 

To expedite the evaporation, vacuum chamber temperature was increased by wrapping it with 

heating tapes. The vacuum chamber was baked for 48 hours at 175° C, which was half of the 

highest baking temperature of the electron gun recommended by the manufacturer. Evaporated 

water molecules left the surface and were removed from the system by turbo-molecular and 

scroll pump. After the first 24 hours, the pressure in the vacuum chamber stabilized in the 10-7 
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Torr range and the ion pump was prepared for operation. This was performed by starting and 

stopping (chopping) the ion pump several times, for about two seconds. After each chop, the gas 

trapped in the electrode surface was released and removed from the vacuum chamber by turbo-

molecular and scroll pumps. Chopping was performed until there was no significant increase in 

pressure measured by the vacuum gauges. Subsequently, the ion pump was started, and the valve 

separating the turbo-molecular and scroll pumps from the vacuum chamber was closed. After 24 

hours of ion pump operation, the pressure in the vacuum chamber was stabilized in the high 10-8 

Torr range, and the baking was stopped. With the cooldown, the inside surface of the vacuum 

chamber absorbed part of the remaining air molecules, reducing the pressure to the base value of 

2·10-9 Torr. 

The operating procedure of the described vacuum system was repeatedly achieving the 

base pressure, which was sufficient for continuous operation of the electron gun during the SEY 

measurements. The increase in pressure measured during the electron gun operation never 

exceeded 4·10-9 Torr. 

4.1.3 Sample fabrication 

Three sets of samples were fabricated from the cavity grade niobium to include the 

characteristic microstructures present on the accelerating SRF cavity surface. The niobium sheet 

metal plate was cut into strips that were welded by the electron beam to replicate the weld areas 

of equator and iris edges of the cavity. Extraction of the samples from the plate was performed 

using the waterjet cutting machine and in such position to include a weld zone (WZ), a heat 

affected zone (HAZ) and a base niobium (BASE). Samples were made to be circular with 

diameter of 20 mm and the thickness of 3 mm. A mounting hole with an M2 thread was made on 

the back surface of the samples. A total of ten samples were fabricated for each set. Using BCP 
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method, a 5 μm layer was etched from the surface of nine samples to remove any impurities 

embedded during the waterjet or mounting hole threading procedure. The remaining sample did 

not go through any surface preparations. 

 

 

 

 
(a)        (b)        (c) 

Fig. 4.3  The SEM pictures of three different microstructures of characteristic surfaces taken at 

x500 magnification scale. Surfaces correspond to the (a) WZ, (HAZ), and (c) BASE. 

 

 

 

The SRF cavities have areas of different microstructures on its surface as a consequence of 

the fabricating procedure. Differences in the microstructure are formed during the electron beam 

welding process. Three different surface microstructures can be observed in equator and iris weld 

areas. First, the weld zone (WZ) forms where the niobium was melted to join the two half cells 

during welding (Fig. 4.3 (a)). Second, the heat affected zone (HAZ) was formed in the area 

around the weld bead due to the effect of heat dissipation through the material (Fig. 4.3 (b)). A 

high temperature causes the increase in size of the microstructure grains in HAZ. Third, the 

initial microstructure (BASE) of the niobium was found at the distance from the weld zone where 

the heat energy level was low enough not to cause any microstructure change (Fig. 4.3 (c)). The 
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BASE surface was divided into a high and a low temperature section, where the high temperature 

section was adjacent to the HAZ and the low temperature section which was farther from the 

HAZ. Separation of surfaces was made due to the reported influence of high temperature on the 

SEY. 

 

 

 

Table 4.1  List of impurities in niobium sheet metal, sorted by the total content (maximum 

percent). Chemical content was determined by the Eagle Alloys Corporation. 

Chemical content (maximum percentage) 

Element Content [%] Element Content [%] 

Ta 0.1 N 0.004 

Mo 0.009 Ni 0.002 

Zr 0.008 Si 0.002 

Hf 0.007 W 0.001 

Fe 0.006 O 0.0012 

C 0.005 H 0.0007 

 

 

 

 

In order to measure SEY of the characteristic surfaces present on the surface of the 

accelerating cavity, three sets of samples were fabricated from the cavity grade niobium. The 

niobium sheet metal used for sample fabrication was obtained from Eagle Alloys Corporation. 

The chemical composition of the niobium sheet metal was determined by the vendor and it is 

presented in Table 4.1. Samples were fabricated by cutting the sheet metal into three strips and 

then welding them together by the electron beam with the same welding parameters used for 

cavity fabrication. After setting the plates in the welding position, the chamber has been 

evacuated to 5·10-5 Torr. An initial preheat pass of 16 mA, and 50 keV electron beam with the 

plate speed of 20 inches per minute was made. Subsequently, a beam of 42 mA, 50 keV with 18 

inches per minute was used to create a full penetration weld and join the plates. For both passes, 

the electron beam was rastered in an oval shape with 0.275 inches along the weld direction and 
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0.080 inches transverse to the weld direction. Rastering was performed to create a stirring effect 

in the molten metal and allow the escape of trapped gasses. After welding, the plate remained in 

the vacuum of the welding chamber for a cooldown. Once the welded plate reached ambient 

temperature, it was removed from the vacuum chamber for sample extraction. The sample 

extraction was performed by a waterjet cutting machine to avoid inducing additional heat into the 

niobium samples. In addition, the mounting hole with the M2 thread was made at the back of the 

sample which was used to attach the sample to sample stage (Fig. 4.4). 

 

 

 

 

Fig. 4.4  Sketch of the sample with a sectional view showing mounting hole. 

 

 

 

 
(a)  (b)  (c) 

Fig. 4.5  Sketch of the samples from each set (top row) and their matching photographs (bottom 

row). Samples are from sets as follows: (a) BASE set, (b) OFFSET set, and (c) WELD set. 
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Three sample sets are extracted to include the characteristic surfaces present on the cavity 

after fabrication procedure (Fig. 4.5). The first sample set is named BASE (B) and it represents 

the surface of the cavity that is found half way between the iris and equator weld. A 

characteristic of this sample set is the uniformity of microstructure. The second set is named 

OFFSET (O) describing the position of the sample taken from weld bead with respect to the 

center line of the sample. The samples from this set have characteristic surfaces of WZ, HAZ, and 

the high temperature section of the base metal adjacent to the heat affected zone (R-HAZ). The 

third sample set is named WELD, and it contains the HAZ and WZ characteristic surfaces. In the 

WELD sample set, the weld bead is located across the middle of the sample surface. 

There were a total of ten samples fabricated in each set, one for every incident angle of 

primary electrons plus one additional sample. Nine samples from each set underwent BCP 

etching to remove any impurities from the surface absorbed during waterjet cutting and the 

making of the mounting holes. A sample from each set was excluded from BCP to test the SEY 

of the niobium without any additional surface preparations after welding. 

4.1.4 Collector fabrication 

A custom collector of the electrons emitted from the surface of the sample was designed to 

be mounted on the mouth of the electron gun. The designed collector allowed the transition of 

the primary electron beam to the surface of the sample and collection of the emitted electrons. 

Furthermore, the collector had to be large enough to permit the measurement of SEY at multiple 

spots on the sample at different incident angles of the primary electrons. These requirements 

placed the constraints on the dimensions of the collector and the maximum incident angle of 

primary electrons for which all emitted electrons can be collected. The adopted collector design 

was fabricated out of titanium due to its low SEY magnitude [27]. 



www.manaraa.com

56 

 
 

Fig. 4.6  Sketch of the collector design (top) and cross-section of the collector with dimensions 

(bottom). 

 

 

 

The collector was designed to be mounted on the mouth of the electron gun (Fig. 4.6). To 

electrically separate the surfaces of the collector and the electron gun, a Teflon cap was 

fabricated that was fitted on the electron gun before the collector. To allow the transition of the 

primary electrons from the electron gun to the sample surface, a 5 mm aperture was made on the 

collector. The inner diameter of the collector was chosen to allow nine measurements spots on 

the sample surface at normal incident angle of primary electrons. The number of measurements 

was limited to avoid the contact between the surfaces of the sample and the collector which 

would create a short circuit in the current measurement. Brims were added to the top and the 

bottom of the collector to extend the range of incident angles of primary electrons for which all 

emitted electrons can be collected. The arc length of the brims was limited to allow the rotation 
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of the sample stage and avoid the contact of the sample with the collector. The length of the 

brims was also limited to avoid contact of the collector with the components of the sample stage 

at different measuring spots and incident angles of samples. The final design of the collector 

allowed gathering of all emitted electrons in the range of ±60° incident angle of the primary 

electrons. To avoid contact between the surface of the collector and the sample stage, the number 

of measuring spots on the sample surface for incident angles of ±45° and above was reduced. 

The fabricated collector allowed the transition of the primary electrons through the aperture 

without affecting the direction and the current magnitude of the electron beam. Electrons emitted 

from the surface of the sample were completely collected in the range of ±60° incident angle of 

the primary electrons. 

4.1.5 Sample stage assembly 

The large number of measurements that needed to be performed required a sample 

manipulation system in order to increase test efficiency. Therefore, it was necessary to create a 

system that will satisfy the requirements of multiple measuring spots on a single sample, 

mounting multiple samples, and for a range of incident angles of primary electrons at which the 

SEY can be measured. To that end, the apparatus was assembled from the combination of 

commercial and custom parts. The foundation of the system was a sample stage (PHI 15-610 

Physical Electronics) that could carry up to twelve samples. The sample stage had four degrees 

of freedom, three translational axes forming a 3D Cartesian coordinate system for sample 

positioning, and one rotational motion that allowed changing the sample under examination 

while in the vacuum (Fig. 4.7). Specifically, each axis of translational motion allowed ±12.5 mm 

movement with 2 μm increment, whereas the rotation had 12 preset positions, one for each 

sample that the stage could carry. In addition, the sample stage was designed for high vacuum 
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environments and had four vacuum BNC feedthroughs. Available BNC connectors have been 

used to connect the current measuring equipment and the power supply used for sample biasing. 

 

 

 

 

Fig. 4.7  3D model of the experimental setup interior showing the directions of translational ((x), 

(y), and (z)) and rotational motions (R(y)), and location of the electron gun with the mounted 

collector [54]. 

 

 

 

The sample stage provided the means of mounting multiple samples at one time, however 

the challenge of mounting the samples at specific angles still needed to be addressed. In addition, 

the sample mounts had to be compatible with high vacuum and electrically conductive. A large 

number of different sample mounts have been developed for application in various surface 

characterization equipment. However, very few holders were compatible with all presented 

requirements. At the end, a sample holder with a rotatable mount base (PELCO SEMClip 15339-

10) was selected to carry the samples and tilt them at specific angles. Additional modifications 
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were made to the sample holder to accommodate the sample size and increase the tilt angle of the 

sample. 

 

 

 

 

Fig. 4.8  Cross-section of the electron gun and the collector assembly, with a centered sample at 

normal incident angle. 

 

 

 

 

Fig. 4.9  Sketch of the samples from each set with the location of the 9 measurement spots, at 

normal incident angle. 

 

 

 

Once the samples were mounted on the sampler holders, the assembly was attached to the 

sample stage. The sample was positioned in front of the electron gun and aligned with the 

collector axis (Fig. 4.8). With the sample positioned, three micrometer calipers on the sample 

stage were set to 12.5 mm mark which was the middle value of the total distance that sample 

stage can travel in one direction. Once the position of the sample center was recorded, the 
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placements of the additional measuring spots could be determined. For a sample surface 

perpendicular to the primary electron beam (0°), a total of nine testing locations were determined 

in a 3 by 3 pattern (Fig. 4.9). Fig. 4.9 also indicates the number of measurements that can be 

performed at a characteristic surface of three sample sets. The distance between the spot centers 

was 3 mm in each direction of the primary axes to avoid the overlapping of the surfaces 

irradiated with the electron beam and stay within the characteristic surface on the sample. Each 

measuring spot has a set of three coordinates that describe its position relative to the centered 

sample. Since one of the goals was to determine the SEY as a function of the incident angle of 

primary electrons, as a set of coordinates for each measuring spot was determined at each 

observed angle. Specifically, the sample was rotated on the holder to form an incident angle with 

primary electrons in a range of ±60° with 15° increment (Fig. 4.10). The rotation axis of the 

sample holder was located behind the examined surface (Fig. 4.8). Therefore, each measuring 

spot at a specific angle required a correction in the set of coordinates to keep the spot position 

constant with respect to the electron beam. 

 

 

 

 

Fig. 4.10  Sketch of the incident angles (θ) that were formed by the normal of the sample surface 

and the primary electron beam. 
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By including the adjustments of the sample position, all experimental parameters except 

incident angles were kept invariant. Consequently, any observed change in the SEY, on a uniform 

surface, should only be a function of the angle variation. However, with the increase in the 

absolute angle of inclination, positioning correction values became large enough to cause the 

contact between the collector and the sample holder. To avoid the contact between the sample 

and the collector, the number of measurement spots was reduced for incident angles above ±45°. 

For instance, it was possible to measure 9 different spots on the samples in the range of ±30°, but 

for angles at ±45° and ±60°, only 6 and 3 measuring sites were possible, respectively. The 

number of measuring spots available and surface viewed from the primary electron beam 

direction at different incident angles was shown in Fig. 4.11. To assure correct positioning, 

relative sets of coordinates with included corrections for testing sites have been recalculated to 

absolute sets of coordinates. Absolute sample stage coordinates for the central spot on the 

surface are given in Table 4.2. 

 

 

 

 

Fig. 4.11  Surface of the sample observed from the primary electron beam direction at different 

angle of sample inclinations and the number of measuring spots with locations for each angle. 
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Table 4.2  Absolute sample stage coordinates for the middle row/center column spot on the 

surface at all incident angles. Distance from the electron gun mouth was denoted by (z) axis, 

vertical position was denoted by (y) axis, and horizontal position was denoted by (x) axis. 

Sample Coordinates [mm]  Sample Coordinates [mm] 

Angle (z) (y) (x)   Angle (z) (y) (x) 

0° 19.00 12.5 12.50  0° - - - 

+15° 19.23 10.72 12.50  -15° 19.23 14.28 12.50 

+30° 19.92 9.07 12.50  -30° 19.92 14.28 12.50 

+45° 21.00 7.65 12.50  -45° 21.00 17.35 12.50 

+60° - - -  -60° - - - 

 

 

 

 

4.1.6 Automated sample positioning system 

An automated system was developed for sample manipulation in order to reduce the time 

of positioning the samples at different measuring spots. The number of measuring spots at all 

angles together with the set of three coordinates leads to a long time required to position the 

samples manually. To avoid manual positioning of the samples, a custom automated system was 

designed that was able to store all positions of measurement spots at all angles of inclination, and 

position the individual sample appropriately for a recalled measurement spot. 

 

 

 

 

Fig. 4.12  The interface mechanism used to transfer the rotational motion of the stepper motors to 

micrometer calipers of translational motion, while allowing free axial movement. 
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The automated positioning system contained several components. First, each degree of 

freedom was powered by a stepper motor. Translational motion axes were powered by stepper 

motors (Wantai SM-45BYG011) which provided 2.5 μm of linear motion per single step of the 

motor. Since the accuracy of the micrometer calipers on the sample stage were 2 μm, the least 

common multiple of 2.5 and 2 was 10 μm, which was the step size of the sample positioning. For 

the rotation of the sample stage, a stepper motor (Wantai SM-42BYGHM809) with higher torque 

was required. Stepper motors were controlled by Arduino Mega 2560 and the touch screen 

display with a custom graphics user interface (GUI). Coordinates of the measurement spots were 

recorded in the GUI software which were recalled for the SEY measurement, positioning the 

selected spot of the sample in front of the electron beam. Second, a mechanism interface was 

designed to transfer the rotational motion of the stepper motors to the sample stage, while 

allowing the free translational movement of the micrometer calipers (Fig. 4.12). In addition, to 

avoid the accumulation of error in positioning during the extended period of operation, stiffness 

of the mechanism was crucial. At the end, the adopted design was fabricated in a 3D printer 

(MakerBot Replicator) and tested. The results of mechanism interface testing confirmed the 

negligible accumulation of positioning error over multiple trials. The housing case for the 

electronics and the stepper motor mounts were designed to be attached to the sample stage. 

Photos of the assembled automated system are shown in Fig. 4.13. 
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Fig. 4.13  (a) Assembled automated system for sample positioning, and (b) stepper motors 

removed from the sample stage. 

 

 

 

4.1.7 Data acquisition system 

An experimental setup was developed to measure SEY by utilizing the collector current 

method. Synchronized measurement of the collector and sample currents was necessary to 

accurately determine the SEY magnitude. A dual channel picoammeter (Keithley 6482) was 

employed to measure the collector and the sample currents simultaneously and store the data to 

an integrated memory buffer. Measurement data were later transferred to PC for further analysis. 

To obtain accurate measurements, low noise coaxial cables were used to connect the 

picoammeter with the collector and the sample. Furthermore, voltage sources were added to the 

electric circuit which allowed biasing of the sample and the collector and controlling the flow of 

emitted electrons between their surfaces. Multiple impacts of emitted electrons were prevented 

by positively biasing the collector and negatively biasing the sample. 

By using the collector current method to determine the SEY, the current had to be measured 

simultaneously on the collector and the sample. The current measurement was performed with a 
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dual channel picoammeter. During measurements, current magnitudes of the collector and the 

sample were recorded in the memory buffer of the picoammeter. The collector current was 

measured by connecting a low noise coaxial cable between the picoammeter and the BNC 

connector located on one of the flanges of the vacuum chamber. Inside the vacuum chamber, a 

connection between the collector and the BNC connector was made by a ceramic shielded copper 

wire. A ceramic insulation was used to prevent the short circuit that would occur during contact 

between the copper wire and the vacuum chamber wall. The sample current was measured by 

connecting a low noise coaxial cable from the picoammeter to one of the BNC feedthroughs on 

the sample stage. Inside the vacuum chamber, the sample stage already had a connection 

between the sample and the BNC feedthrough. Electric current noise levels from the cables and 

connections measured on the picoammeter were ±1 pA on both the collector and the sample 

measurement channel. Increased current noise levels (around ±7 pA) were observed on both 

channels as a consequence of floor vibrations generated during movement in the proximity of the 

experimental setup. In order to keep the current noise levels as low as possible, electron gun 

control and data acquisition were performed remotely by using a PC. In addition, access to the 

experimental setup was restricted during the measurement of the SEY to avoid raising the current 

noise level due to vibrations. During the remote measurement of the SEY, current noise levels 

were in the range ±1 pA. With the primary electron beam current always above 300 pA, error in 

measurements due to current noise level was always less than 1%. 

The collector and sample current were measured simultaneously while the primary electron 

beam was directed towards the sample surface. Due to the secondary electron emission property 

of the material, electrons were emitted and reflected from the sample surface back to the 

collector surface at various angles. By measuring the collector and sample currents, the SEY can 
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be calculated using Eq. (3.2). The sketch of the measurement circuit was presented in Fig. 4.14. 

To ensure that electrons leaving the sample surface were not returning, a negative bias was 

applied to repel them. On the other hand, the collector was biased to a positive voltage to retain 

all incoming electrons and prevent the formation of the tertiary electrons. Biasing of the sample 

and collector was necessary to prevent the transfer of electrons from collector to the sample 

surface. 

 

 

 

 

Fig. 4.14  Schematic of the experimental setup. The collector and the sample currents were 

measured simultaneously and the data were stored in PC. 

 

 

 

To determine the SEY with the collector current method a dual channel picoammeter was 

used to simultaneously measure the current magnitude of the collector and sample surfaces. The 

connection of picoammeter with the sample and the collector was done with low noise coaxial 

cables. The noise level in the measurement circuits recorded on the picoammeter was in the 

range of ±1 pA. In addition, the voltage sources were added to the electric circuit to allow 

biasing of the collector and the sample in order to prevent the false current readings. Current 
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magnitudes were recorder in the memory buffer of the picoammeter during the measurement, 

after which they were transferred to PC for analysis. 

4.2 Calibration measurements 

A series of calibration measurements was performed in order to obtain the values of input 

parameters required to maintain the magnitude and the size of the primary electron beam. 

Specifically, the recommended magnitude of the primary electron beam current was as low as 2 

nA or lower, to avoid the processing the sample surface with electron beam during the 

measurements [26]. Equally important was keeping the electron beam current constant across the 

energy range of the primary electrons. In addition, one of the goals was to measure different 

characteristic surfaces on the samples, therefore the size of the beam cross-section needed to be 

determined and controlled. Finally, it was observed that bias voltages of sample and collector 

significantly affect SEY magnitude when compared to the SEY results obtained without bias 

voltages. To that end, the bias potentials of the collector and sample needed to be determined to 

control the emitted and reflected electrons and provide the accurate current measurements with 

minimum influence on the experiment. 

4.2.1 Primary electron beam parameters 

Uniformity of electron beam current across the primary electron energy range was 

necessary to maintain the comparability of the SEY results. The electron beam current magnitude 

was controlled by adjusting the voltage of the filament in the electron gun. Fine tuning of the 

beam current magnitude was controlled by the Grid and the 1st Anode voltages of the electron 

gun. A gradual decrease in the electron beam current was observed for the first three hours of 

electron gun operation after which the current stabilized. After the beam current was leveled-off, 

the SEY was measured for five different filament currents with and without the applied bias 
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voltages on the collector and the sample. In addition, the magnitude of the primary electron beam 

current was measured under the same conditions. Significant differences in SEY were observed 

between the measurements with and without bias voltages which was a consequence of electron 

movement between the surfaces of the collector and the sample. The variation of SEY at different 

primary electron beam currents was also observed, though it was smaller in magnitude. On the 

other hand, the reduction of the filament current indicated the improvement of primary electron 

beam current stability across the energy range of primary electrons. It was concluded that 

applying bias voltages and keeping the low filament current provides a more accurate 

measurement of SEY and a stable primary electron beam current, respectively. 

The formation of free electrons, and their subsequent focusing into a beam, occurs in 

several steps. In an electron gun, electrons are released from the surface by applying a high 

current through the tantalum cathode filament and heating it up. The current in the cathode was 

controlled by adjusting the filament voltage in the gun power supply. Subsequently, the emitted 

electrons are funneled through a series of electro-optics that form and control energy, intensity, 

and size (cross-section) of the electron beam. Specifically, the fine tuning of the current was 

performed by changing the voltages of the Grid and the 1st Anode in the electron gun. For 

example, increasing the potential of the Grid reduces the beam current, while the 1st Anode 

increases the beam current. In addition, the size of the electron beam was controlled by adjusting 

the Focus voltage. Focus voltage magnitudes controlling the size of the electron beam are also a 

function of Grid and 1st Anode voltages. 
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Fig. 4.15  Electron gun filament current at a constant filament voltage of 1.1 V. 

 

 

 

Once the filament voltage was set, a decrease in the filament current was observed during 

the initial operation of the electron gun. Over time, the filament current gradually reduces until it 

becomes stable after three hours of operation (Fig. 4.15). In order to obtain stable conditions 

during the experiments, a uniform filament current must be achieved before beginning 

measurements. For that purpose, an additional warm-up sample was added to the sample stage, 

which was specifically used to receive the electrons from the electron gun during the filament 

current stabilization. The warm-up sample was positioned in front of the electron gun during the 

first three hours of operation. 
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Fig. 4.16  SEY as a function of primary electron energy (E0) for five different electron gun 

filament currents, with bias (Uc= +40 V and Us= -20 V) and without bias (Uc= 0 V and Us= 0 V). 

 

 

 

 

The secondary electron yield and the primary electron beam current in the energy range 

from 40 to 2000 eV was determined for five different filament currents, while the Grid and 1st 

Anode voltages were kept at 0 V. Also, two sets of measurements were taken, with and without 

the bias voltages on the collector (Uc= +40 V) and sample (Us=-20 V). The secondary electron 

yield and the primary electron beam current results are shown in Fig. 4.16 andFig. 4.17, 

respectively. Results presented in Fig. 4.16 clearly indicate that the yield values were higher 

when the bias voltages were applied. By setting the negative sample and the positive collector 

potentials, the emitted and reflected electrons from the sample surface were drawn in and 

absorbed by the collector, preventing formation of the tertiary electrons. The secondary electron 

yield results, both with and without applied bias voltages, exhibited variation as a function of the 

primary electron beam current. The effect of bias voltages on the various magnitudes of the 

electron beam current is shown in Fig. 4.17. The effect of the bias voltages on the primary 
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electron beam decreased with the reduction of filament current. Moreover, the uniformity of the 

primary electron beam current was gradually achieved by the reduction of the filament current, 

as well. To summarize, lower filament parameters produce uniform primary electron beam 

current, which was not affected by the bias voltages. However, the measured SEY was still 

affected by the bias voltages of the collector and sample. In other words, the yield measured 

without the bias voltages on the collector and sample may be misleading since nothing was 

stopping the electrons from making multiple impacts until they were reabsorbed by one of the 

surfaces. 

 

 

 

 

Fig. 4.17  Primary electron beam current (i0) as a function of primary electron energy (E0) for 

five different electron gun filament currents, with bias (Uc= +40 V and Us= -20 V) and without 

bias (Uc= 0 V and Us= 0 V). 
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bias voltages direct the emitted electrons from the sample surface towards the collector surface 

where they are absorbed, preventing multiple impacts of electrons and false current readings. On 

the other hand, uniformity of the primary electron beam current was significantly improved by 

reducing the filament current levels. Subsequent calibration measurements were performed 

taking into the account results obtained here. 

4.2.2 SEY as a function of the collector and sample bias voltage 

A series of experiments was performed to determine the minimum values of bias potentials, 

as not to perturb the system more than necessary, in order to obtain the accurate SEY 

measurements. After a thorough literature review it was found that were no reported results of 

systematic measurement on the effect of the bias voltage magnitudes on the SEY. To avoid 

unnecessary perturbation of the measurement system, it was necessary to determine the 

minimum values of sample and collector voltages that would produce steady SEY magnitudes. 

Bias voltages were varied from 0 to 50 V in 10 V increments of positive collector and negative 

sample bias. The secondary electron yield was determined at 100, 200, 300, and 400 eV of 

primary electron beam energy for all combinations of the collector and sample potentials. The 

obtained results indicated that SEY magnitudes stabilized above 10 V of the positive collector 

voltage and the negative sample voltage. The best repeatability of results was observed for +30 V 

of collector voltage and -10 V of sample voltage, which were adopted as SEY measurement 

parameters. 

In order to determine the minimum potentials that would produce stable SEY results, a 

series of measurements was performed at four different primary electron beam energies. At each 

primary electron beam energy, the collector was biased in the range from 0 to +50 V in 10 V 

increments. For each collector potential value the sample bias was set in the range from 0 to -50 
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V, also in 10 V increments. The surface plots of the SEY at four different energies of the primary 

electron beam are given in Fig. 4.18. It can be observed that the yield values almost completely 

stabilized above the collector voltage of +10 V and below the sample voltage of -10 V, except at 

E0=100 eV. At 100 eV of primary electron energy, the increase in the negative voltage on the 

sample past -10 V leads to gradual decrease in the measured SEY for a steady collector voltage. 

The most uniform results of SEY were observed for +20 V and + 30 V of the collector bias, 

which were selected as possible collector voltages for further testing. 

 

 

 

 

Fig. 4.18  SEY as a function of the collector (Uc) and the sample (Us) voltages for four primary 

electron beam energies (E0). 
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Fig. 4.19  SEY as a function of the sample bias voltage (Us) at two collector potentials (Uc) for 

four primary electron beam energies (E0). 

 

 

 

Based on the results, two voltage levels were selected as the possible bias of the collector 

(+20 V and +30 V). Even though it was established that the yield values were stable at the bias 

voltages of the sample below -10 V, it is beneficial to have the voltage of the sample as close to 

zero as possible to reduce electron beam deflection when determining the influence of the 

primary electron beam incident angle on the SEY. For that purpose, additional tests were 
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performed in the range between the 0 V and -10 V of the sample voltage. Specifically, yield 

values were determined at the same four primary electron beam energy levels as before, at 0, -2, 

-6, and -10 V sample bias, and two collector voltages at +20 V and +30 V. The SEY measured at 

these voltages was compared with the previous yield results at 0 V and -10 V on the sample (Fig. 

4.19). Additional test points confirmed that the effect of the sample bias could be described as 

linear in the range up to -10 V. The measured yields converged at approximately the same value 

at -10 V of the sample bias and both +20 V and +30 V of the collector bias. In order to make the 

final decision on the collector bias voltage, two SEY measurements were made in the primary 

electron energy range from 40 to 400 eV at both collector voltages (Fig. 4.20). The collector 

voltage was selected to be +30V, since the SEY measurements indicated better repeatability at 

that collector bias value. 

 

 

 

 

Fig. 4.20  SEY and primary electron beam current (ip) as a function of E0, for (a) Uc= +20 V and 

Us= -10 V, and (b) Uc= +30 V and Us= -10 V. 
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A systematic approach was adopted to determine the influence of bias voltages of the 

sample and the collector on SEY magnitude. A secondary electron yield was determined at four 

different energy levels and voltage ranges from 0 to +50 V on the collector and 0 to -50 V with 

10 V increments. The obtained results pointed out that the SEY stabilizes above +10 V of 

collector bias and below -10 V of sample bias. In addition, the steadiest results were observed for 

+20 V and +30 V of collector bias and for -10 V of sample bias. Two additional SEY 

measurements performed in the primary electron energy range of 40 to 400 eV indicated better 

repeatability of the results for +30 V of the collector bias. To summarize, the optimal bias 

voltages obtained by the tests were chosen at +30 V and -10 V of the collector and the sample, 

respectively, and adopted as the SEY measurement parameters. 

4.2.3 Primary electron beam size control 

To determine the SEY of characteristic surfaces of the fabricated samples, the primary 

electron beam size needed to be determined and controlled. Using a phosphor screen that 

illuminates in the area where the electrons are impacting is a common method to ascertain the 

size of the electron beam. An attempt was made to measure the size of the electrons beam by 

using a phosphor screen (Kimball Physics PHOS-UP22SS-B5x5-R500), but the low current of 

the beam was not able to excite the phosphor surface. However, once the current magnitude was 

increased, a blue dot on the screen was observed. Since this method was not effective in 

measuring the beam size at low current, the method described in [26] was adopted and adapted to 

fit the experimental setup. The schematic of developed primary beam collector (PBC) is shown 

in Fig. 4.21. The size of the electron beam was controlled by adjusting the Focus voltage of the 

electron gun to funnel as many electrons as possible through the aperture on the front plate of the 

PBC. When the measured current on the front plate was zero, the electron beam diameter was 
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smaller than the aperture diameter. The magnitudes of the Focus voltage were determined for the 

primary electron energies in the range from 60 to 2000 eV. 

 

 

 

 

Fig. 4.21  Design sketch of the Primary Beam Collector (PBC). 

 

 

 

The primary beam collector (PBC) was designed, fabricated, and tested to measure the size 

of the electron beam cross-section. The design of the PBC included the back and the front plate 

made of stainless steel, and a Teflon separator was used as an electrical insulation between the 

two plates. Two front plates were fabricated, with a different diameter circular opening at its 

center (2 and 3 mm), to determine the quantity of electrons passing through the aperture for the 

same electron gun parameters. In order to measure the beam size, the PBC was attached to the 

sample stage and centered in front of the electron gun. Specifically, as the primary electron beam 

leaves the mouth of the electron gun, it passes through the aperture on the collector and hits the 

center of the PBC. All components along the path of the primary electron beam were biased to 

successively larger positive potentials. For instance, the collector was placed at +25 V, the front 

plate of PBC at +30 V and the back plate of PBC at +50 V. The purpose of these potentials was 

to prevent emission of secondary electrons from interfering with the beam size measurement. 

dFP 
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The picoammmeter was used to measure the current on the front and the back plate of the PBC. 

When the front plate current was zero, the electron beam cross-section was smaller than the 

aperture of the front plate. The size of the electron beam was adjusted to fit the size of the front 

plate aperture. The fraction of electrons reaching the back plate through the aperture on the front 

plate was calculated as a ratio of the back plate, and the sum of the back and the front plate 

currents. This quantity presented the part of the beam hitting the back plate surface of the PBC. 

The equation used to determine the ratio of currents was set as 

 , (4.1) 

 

where iBP was the back plate current and iFP was the front plate current. The ratio was measured 

using both front plates with different diameters. After several iterations, Filament, Grid and 1st 

Anode voltages of the electron gun were selected that formed the electron beam size needed to 

measure the SEY of the characteristic surfaces of the samples. It is important to note that these 

parameters were chosen as a trade-off between the beam size and the primary electron beam 

current magnitude across the energy range. The electron beam parameters used for the 

experiments are shown in Table 4.3. The Focus voltage magnitudes and the corresponding 

electron beam size as a function of the primary electron energy are given in Fig. 4.22. 

 

 

 

Table 4.3  The electron beam parameters used for the SEY measurements. 

e- gun parameters Magnitude 

Source Voltage [V] 1.1 

Source Current [A] 1.345 

Grid [V] 16 

1st Anode [V] 93 

Distance to the sample [mm] 27 
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Fig. 4.22  The ratio of electron currents (A) for two diameters of the front plate hole (dFP) and 

Focus voltage, as a function of the primary electron energy (E0). 

 

 

 

The primary electron energy range of 60 to 2000 eV was divided into three sections with 

different incremental increases of the energy. The first section of the primary electrons energy 

from 60 to 400 eV was incrementally increased by 20 eV. In the second section, 400 to 800 eV 

of the primary electron energy increased in 50 eV increments. Last, the third section of the 

primary electron energy from 800 to 2000 eV was scanned with 100 eV increments. With the 

electron beam directed towards the surface center of the PBC, the current was measured on the 

front and back plate with the picoammeter. At each primary electron beam energy, the Focus 
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eV the value of ratio A was 0.95 indicating that 95% of the beam electrons are within the 

aperture diameter. The ratio A value increases almost linearly to value 1 with the increase of the 

primary electron energy to 220 eV where 100% of electrons are going through a 2 mm aperture. 

In the primary electron beam energy range from 1300 to 2000 eV, ratio A value starts decreasing 

from 1 to 0.73. The measurement was repeated for the front plate aperture diameter of 3 mm. 

The ratio A value starts at 0.97 at 60 eV, rises to 1 at 160 eV, remains constant up to primary 

electron energy of 1900 eV, and reduces to 0.97 at 2000 eV. The Focus voltage as a function of 

the primary electron beam energy was adopted for SEY measurements. 

The cross-section of the electron beam obtained by applied the Focus voltage was less than 

3 mm across most of the energy range which allowed the measurement of the characteristic 

surfaces in the weld area of fabricated samples. The known size of the electron beam also 

permitted the measurement of multiple spots on the sample without overlapping the irradiated 

surfaces of the measured spots. 

4.3 Measurement procedure and data analysis 

A measurement procedure was established to maintain the comparability of the results 

during the SEY measurements. All SEY measurements were performed using the same electron 

beam parameters, sample and collector voltages, the distance of the measuring spot from the 

mouth of the electron gun, at all incident angles and energy range of the primary electron beam. 

To mitigate the effect of the current noise levels in the measurement circuits, the primary 

electron beam current was kept between the 300 and 500 pA. By keeping the current in this 

range, the influence of the current noise levels on the SEY measurements was less than 1% for all 

primary electron energy values. In addition, the SEY magnitude was measured three times over 

the period of three seconds for a single primary electron energy. Each SEY magnitude showed a 
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high level of mutual agreement. A single SEY curve was determined as an average value of these 

three magnitudes. The average SEY curve of the characteristic surface was calculated based on 

the SEY measured at different spots of the characteristic surface. Since the sample surfaces 

represent only a section of the characteristic surfaces, the variation of results was presented by 

calculating the sample standard deviation. The sample standard deviation of SEY is used to 

calculate the deviation of the entire cavity surface based on the variation of the sample surface. 

Based on sample standard deviation, the range of SEY of characteristic surfaces of the entire 

cavity were inferred by calculating the prediction interval with probability value of 0.9. The 

described data analysis was performed for all incident angles of the primary electron beam.  

The measurement procedure in this study was performed as follows. First, the base vacuum 

of 2·10-9 Torr was achieved, and a warm-up sample was placed in front of the electron gun 

during the filament current stabilization. Second, every component of the experimental setup was 

powered up and was left at its lowest setting for a half an hour to stabilize the operation of 

electronic parts. Third, the bias voltages on the collector and the sample were gradually adjusted 

to +30 V and -10 V, respectively.  Fourth, the parameters of the electron gun were steadily 

increased together to their respective values (Table 4.3), and the primary electron beam energy 

was set to 20 eV for the duration of filament warm-up. Once the filament current stabilized, the 

electron beam current was blocked remotely by using a beam cutoff command in LabView 

software. While the beam was blocked, the samples were positioned using the sample 

manipulator to the predefined measuring spots. Afterwards, the primary electron beam was 

released and the measurement was initiated. All the SEY curves were taken in 60 to 2000 eV 

energy range of the primary electrons. The primary electron energy range was divided into three 

sections with a different incremental increase in energy. Specifically, in the section from 60 to 
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400 eV, the incremental increase of the primary electron energy was 20 eV, the following energy 

section from 400 to 800 eV was increased by 50 eV increments, and the last energy section from 

800 to 2000 eV had energy increased by 100 eV. After the scan of the entire energy range was 

recorded, a sample under examination was replaced by another one. The measured sample and 

collector currents were recorded in the memory buffer of the picoammeter. At the end of the 

measurement, the data were transferred to the PC before starting the following measurement.  

In order to provide a better understanding of the SEY dependence on primary electron 

energy beam, angle of incidence, and the influence of plasma processing, measurements were 

repeated at multiple points across the sample surface. No more than three test spots were 

measured consecutively on a single sample in order to avoid warming up the surface which may 

affect the SEY magnitude. After the measurement was completed on the test spot, the primary 

electron beam was cut off until the next position was set. Tests were performed on samples at 

normal and ±15°, followed by +30°, +45°, and +60°, and finishing the set with the samples at -

30°, -45°, and -60° of the primary electron beam incident angle. Once all the measurements were 

completed, a warm up sample was placed in front of the electron gun and parameters were 

gradually reduced to zero before powering down the electron gun. 

Three SEY curves were determined based on the recorded measurements (Fig. 4.23). A 

single SEY curve was calculated as an average of the three recorded values. All three curves 

showed high mutual agreement of results, indicating that the noise levels in the measurement 

circuits did not influence the results of measurement. 
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Fig. 4.23  Three SEY curves recorded during an energy scan of a single measurement spot as a 

function of the primary electron beam energy. 

 

 

 

Several different metrics have been used to represent the experimental results, namely the 

arithmetic mean, the sample standard deviation, and the 90% prediction interval. 

First, an arithmetic mean was used to present the average SEY value recorded on the 

characteristic surface, which was calculated as 

 , (4.2) 

 

where: is the average value of the yield at a primary electron energy, n is the total number of 

measurements performed on a characteristic surface, and δi is the yield measured at a primary 

electron energy during a single test. 

Second, a sample standard deviation was calculated. Namely, the samples are fabricated to 

represent the entire surface of the cavity, however, the SEY was determined only on a minor area 

of the sample. In order to represent the yield variation of the entire characteristic surface of the 
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cavity based only on the limited number of tests performed on a sample, a corrected sample 

standard deviation s is calculated as 

 . (4.3) 

 

Last, the prediction interval is an estimate of an unknown SEY value (δn+1) based on already 

measured data with a certain probability. In this work, prediction intervals indicate the range of 

yield values that can be measured on the characteristic surfaces outside of the sample area with 

the 0.9 probability. This interval was calculated as 

 , (4.4) 

 

where t0.05, n-1 is the two tail probability of a normal distribution [55]. 

The effect of the incident angle of primary electrons on SEY was described in [27,31], but 

neither of the equations consider the shift of the primary energy at which the maximum yield 

occurs. An angular term in both reported equations was a function of a single parameter 

introduced as a material characteristic. Since both equations produce similar results, only the 

equation from [27] was considered in the analysis of the experimental results that describe the 

influence of primary electron beam incident angle (θ) on the SEY. The material characteristic 

parameter can be determined by minimizing the sum of squares of residual between the average 

yield at each incident angle and the predicted yield value. The equation from [27] for the SEY as 

a function of incident angle of primary electrons is 
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The value of the fitted parameter was compared for each characteristic surface, before and after 

plasma. The results were used to evaluate the effect of plasma processing on the angular 

distribution and variation of the SEY at primary electron beam energy of 320 eV. 

The described measurement procedure was adopted to maintain the comparability of the 

SEY results obtained from the developed experimental setup. The parameters of the electron gun, 

sample position, and voltage potentials of the collector and sample were kept steady for the 

duration of the SEY measurements. The primary electron beam energy was incrementally 

increased from 60 to 2000 eV and the collector and the sample currents were recorded. Based on 

the measured currents, SEY was determined on each of the measuring spots. The average SEY of 

the characteristic surfaces were determined based on the measurements obtained from the 

separate measurement spots. The variation of the SEY magnitudes was accounted by calculating 

the sample standard deviation. Furthermore, the expected SEY magnitudes across the 

characteristic surfaces of the cavity were inferred by calculating the prediction interval with a 

probability level of 0.9. 

4.4 Plasma processing 

The effect of plasma processing on the SEY of niobium samples was determined by 

exposing the samples to plasma formed in commercial plasma processing system (Plasma Etch 

PE-25). Two different processing gases were employed in order to test the effect they had on the 

SEY of the sample surface. Samples were exposed to nitrogen and argon/oxygen plasma for one 

hour at 50 mTorr pressure. After processing, the samples were left in a vacuum for one hour to 

cool-down. During the transfer to the SEY measurement chamber samples were exposed to air at 

atmospheric pressure for one hour before the vacuum chamber was closed. After reaching the 
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base vacuum pressure, SEY measurements were repeated and the results were compared to 

determine the effect of the plasma processing. 

Plasma processing is the method used for removing the contamination and modifying the 

surface exposed to the ionized gas at low pressures. Plasma employed in surface processing is 

usually created at a low vacuum (mTorr range) using several power sources, namely direct 

current (DC), radio-frequency (rf), or microwave (MW). Under the influence of the applied 

electric field, free electrons are accelerated past the threshold for ionization. As a consequence, 

these electrons impact neutral atoms or molecules and create electron-ion pairs, and with the 

presence of neutral radicals, the processing of the surface was achieved by either a chemical 

reaction or a mechanical interaction of plasma with the surface. For the cleaning effect, ionized 

atoms or molecules of the processing gas interact with the non-metallic impurities and the 

interaction products are removed from the surface and the system. The applied processing gas 

determines the removal method and the type of pollutants affected. For example, the use of inert 

gases will remove the surface impurities by physically dislodging them from the surface due to 

energy transfer. On the other hand, active gases, like oxygen, hydrogen or chlorine, will 

chemically react with the contaminants or the substrate and form volatile molecules that can be 

removed from the processing chamber. 

A commercial plasma processing system was used to process the samples. The apparatus 

was relatively simple to operate and allowed the use of different processing gases. Plasma 

generation was controlled by a continuously variable rf power supply with an automatic 

matching network and a manual gas flow valve. The parameters used to process the samples 

remained the same for all processed sample sets. Specifically, the power supply was set to its 

maximum value of 100 W at 50 kHz, while the pressure in the processing chamber during 
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plasma processing was 50 mTorr. The gases used for processing were N2 and Ar/O2 mixture. 

One set of three samples was exposed to N2, while three sets of nine samples were processed in 

Ar/O2 (10% O2 content) plasma. 

The plasma processing procedure was performed in several steps, and was repeated for 

each set of samples and gases used. Once the samples were placed inside the processing 

chamber, venting was initiated and continued until the pressure reaches 20 mTorr. At that time, 

the processing gas was introduced, raising the pressure to 50 mTorr, which remains constant 

during the processing of the samples. Samples were processed in plasma for one hour. Following 

the plasma shut down, samples were left in the processing gas at the pressure of 50 mTorr to cool 

down for an additional hour. Subsequently, the air was released into the processing chamber and 

the pressure increased to the atmospheric level. Exposure to the air at atmospheric pressure was 

one hour for both N2 and Ar/O2 processed samples. The samples were then placed on the 

specimen stage and the vacuum chamber was closed. 
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CHAPTER 5 

 

5 RESULTS 

The developed experimental setup was used to measure the effect of plasma processing on 

the SEY of characteristic surfaces found in the SRF niobium cavity. The results presented in this 

section are organized as follows. 

First, the effect of the nitrogen (N2) plasma processing on the SEY at a normal incident 

angle of primary electrons was tested on the samples representing the base metal and weld zone. 

Second, the effect of the argon/oxygen (Ar/O2) plasma on SEY was measured at nine 

incident angles of primary electrons. The SEY was measured on samples representing the base 

metal and weld area surfaces found on the niobium SRF accelerating cavity. 

A majority of the measured SEY magnitudes from characteristic surfaces converged to 

approximately the same average value after plasma processing. Also, an increase in the SEY was 

observed on most of the examined surfaces. In order to identify potential cause of the SEY 

increase, three surface characterization methods were used to determine the state of the surface 

before and after plasma processing. These are, specifically, surface roughness, surface 

microstructure, and chemical composition of the surface. The measurement methods included the 

atomic force microscope (AFM), scanning electron microscope (SEM), and energy-dispersive x-

ray spectroscopy (EDS). 

Third, several measurements using the retarding potential of the collector were taken at 

three energies of the primary electrons, in an attempt to determine the energy distribution curve 

(EDC) of reflected electrons before and after Ar/O2 plasma. 
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5.1 The N2 plasma processing results 

Three samples were used to test the effect of nitrogen plasma on the SEY of base metal and 

weld zone surface. Two samples of base metal were named BASE 1 and BASE 2. The surface of 

BASE 1 sample was affected by an electron beam during the calibration of the experimental 

setup, while the surface of BASE 2 sample was not exposed to the electron beam prior to the SEY 

measurements. The third sample had a weld bead across the surface and was named WZ sample. 

 

 

 

 
(a)   (b) 

Fig. 5.1  Sketch of (a) BASE 1 and BASE 2 samples, and (b) WZ sample used for N2 plasma 

processing, with the location of the electron beam during SEY measurement. 

 

 

 

Seven SEY measurements were performed on the center spot of each one of the three 

samples (Fig. 5.1), in order to determine the change in the SEY magnitude after repeated 

exposure to the electron beam. Tests were performed on samples before and after plasma 

treatment. 

To avoid increasing the temperature of the sample surface, which could affect the SEY 

magnitude, no consecutive measurements were performed on the surface of a single sample. The 

SEY was measured in the energy range E0=60-2000 eV. In order to accurately present the 

changes in the SEY curve, the energy range of primary electrons was divided into the three 
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regions with different incremental increase in primary electron energy. The first region of the 

energy range E0=60-400 eV has a 20 eV incremental increase. The SEY magnitudes vary 

significantly in this energy range and the small increment increase in energy is required to 

accurately determine changes in the SEY. The second region of the energy range E0=400-1500 

eV has a 50 eV incremental increase. Finally, the third region of the energy range E0=1500-2000 

eV has a 100 eV incremental increase. 

 

 

 

 

Fig. 5.2  The average primary electron beam current (i0) as a function of primary electron beam 

energy (E0), (a) before plasma processing [23], and (b) after plasma processing in nitrogen for 

BASE 1, BASE 2, and WZ sample. Statistical bars are covering the standard deviation. 

 

 

 

The average primary electron beam currents for each of the samples were compared before, 

and after nitrogen plasma processing (Fig. 5.2). It is apparent that two distinct regions of the 

curves are present. The first region of the curve, for all samples, is from 60 to 500 eV where the 

beam current has a steep slope. The variation of the primary electron beam current on average 

was ±15 pA, at each energy level, while the difference between the average current at 60 eV and 

2000 eV did not extend above 140 pA. When the variation of the primary electron beam current 
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is compared with the variations of SEY magnitudes (Fig. 5.3), it can be concluded that the 

variation of beam current did not significantly affect the value of SEY. 

 

 

 

 

Fig. 5.3  Average SEY as a function of E0, for BASE 1, BASE 2, and WZ samples (a) before 

plasma processing [23], and (b) after plasma processing in nitrogen. Statistical bars are 

representing 90% prediction interval. 

 

 

 

Seven measurements performed on BASE 1, BASE 2, and WZ sample, before and after 

plasma, were used to determine the average SEY value and to calculate the corresponding 

statistical bars (Fig. 5.3). Before plasma processing, BASE 2 and WZ samples have shown a slow 

but steady decrease in SEY after each measurement, (Fig. 5.3 (a)). However, that decrease was 

not uniform across the electron energy range. For instance, the difference in the decrease rate 

was visible on the average value of BASE 2 and WZ samples as a “dip” in the SEY curve in the 

energy range E0=450-1200 eV. For the WZ sample, the highest rate of change in SEY was 

observed in the energy range E0=450-1200 eV. A decrease in SEY, though at a lower rate, was 
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also observed in energy range E0=60-450 eV. Last, there was little or no variation in SEY with 

successive measurements in the energy range E0=1200-2000 eV. On the other hand, even though 

a similar trend was observed in BASE 2 sample, the highest rate of SEY change was in energy 

range E0=60-400, followed by the range E0=400-1000 eV. In the high energy range E0=1000-

2000 eV there was little or almost no variation in SEY magnitude. In contrast to BASE 2 and WZ 

sample, BASE 1 surface had a lower average SEY and minor variation of results without any 

definite trend in change. The surface of the BASE 1 can be considered as processed by the 

electron beam since it was used for calibration measurements. 

 

 

 

 
(a)            (b) 

Fig. 5.4  SEY curves (triangle markers) and corresponding i0 (square markers) for the first of 

seven measurements before (BPP) and after (APP) nitrogen plasma processing as a function of 

E0, for (a) BASE 1 and (b) BASE 2 samples. 
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Fig. 5.5  SEY curves (triangle markers) and corresponding i0 (square markers) for the first of 

seven measurements before (BPP) and after (APP) nitrogen plasma processing as a function of 

E0, for WZ sample. 

 

 

 

The same experimental procedure was repeated after samples were processed with nitrogen 

plasma. A significant reduction in variation of SEY was observed as consequence of nitrogen 
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plasma processing. Before plasma processing, the maximum yield was δmax = 1.96 at E0 = 240 
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plasma processing traverses the SEY curve of the sample before plasma processing. The first 

intersecting point occurs at approximately E0 =100 eV where the SEY values after plasma 

processing were lower than before plasma processing. Above the primary electron energy of 100 

eV and below 1050 eV, SEY was higher after plasma processing. The second intersecting point 

was measured at roughly E0 =1050 eV. Above this energy, the SEY of sample after plasma 

processing was lower than SEY of samples before plasma processing. Specifically, the initial 

maximum yield at which this was occurring was δmax = 2.60, while primary electron energy was 

E0 = 280 eV. After plasma processing, these values increased to δmax = 2.79 at primary electron 

energy E0 = 320 eV. The primary electron beam currents on BASE 2 were almost identical across 

the energy range indicating that the SEY change can be attributed to the effect of nitrogen 

plasma. In contrast to the BASE 1 and BASE 2 samples, the SEY of the WZ sample showed a 

reduction across the entire energy range of primary electrons after plasma processing. Before 

plasma processing, the maximum yield was δmax = 2.87 at E0 = 320 eV, after plasma processing it 

was reduced to δmax = 2.44 at E0 = 300 eV. 

Seven measurements were performed on a single spot of each sample before and after 

plasma treatment. It was observed that nitrogen plasma processing reduced variation of SEY. 

However, after plasma processing the average SEY increased on the samples representing the 

base metal. This increase may be caused by exposure of samples to air at atmospheric pressure 

during the transfer between the processing and SEY measurement chamber, as a similar effect 

was observed in [3]. 

5.2 The Ar/O2 plasma processing results 

In order to study the effects of Ar/O2 plasma on SEY of niobium, three sets of nine samples 

were fabricated according to the description in section 4.2 (BASE, WELD, and OFFSET sample 
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sets). On these three sample sets, four characteristic surfaces were selected to perform the SEY 

measurements. The SEY results were combined into four groups based on the characteristic 

surface where the measurements were performed. The first group of results was BASE, 

representing the SEY measured on the base metal. The second group was WZ, representing the 

SEY measured on the weld zones of WELD and OFFSET sample sets. The third group was HAZ, 

representing the SEY measured on heat affected zones of WELD and OFFSET sample sets. Last, 

the fourth group of results was R-HAZ, representing the SEY measured on the surface adjacent to 

the heat affected zone of the OFFSET sample set. In addition, the effect of incident angle of 

primary electrons on SEY was measured by orienting the sample surfaces with respect to the 

primary electron beam. 

 

 

 

 

Fig. 5.6  Average primary electron beam current (i0) and standard deviation as a function of E0. 
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current amongst different measurements was less than 10%. Since the variation of the primary 

electron beam was small individual primary electron beam curves for the SEY measurements are 

not included. Instead, an average value and standard deviation were calculated to represent the 

variation of the primary electron beam current (Fig. 5.6). The statistical bars covered 

approximately ±24 pA from average value at each energy level where the measurements were 

recorded. 

It can be observed that the primary electron beam current curve has two distinct sections. 

The first section, in the energy range E0=60-400 eV current had a steep steady rise from 350 pA 

to 439 pA on average. The second section, in the energy range E0=400-2000 eV has a low 

current increase from 439 pA to 462 pA on average. Consequently, this adds to a total increase 

of 112 pA in the primary electron beam current over the entire energy range. The cause of this 

instability can be traced to electron gun optics parameters that were set to maintain the size of the 

electron beam cross section (see Section 4.2.3). The difference in the primary electron beam 

current at the low energy range and at the high energy range did not significantly affect the 

results of the SEY. 

5.2.1 SEY measured at θ=0° 

A sample from each set was positioned to form a 0° incident angle (normal to the sample 

surface) with the primary electron beam. This sample position allowed for nine measurement 

spots on each sample surface. 
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Fig. 5.7  The average SEY with sample standard deviation bars as a function of E0 at θ=0°, (a) 

before and (b) after plasma processing. 

 

 

 

Before plasma processing, the average SEY of BASE surface was lower when compared to 
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characteristic surfaces found in the weld area (WZ, HAZ, and R-HAZ) are grouped together, 

which may be the consequence of heat created during the welding procedure, different 

microstructure or decreased number of grain boundaries. It was reported [17] that the SEY 

changes after heat treatment of the material. The variation of the SEY across the characteristic 

surfaces of the weld area was much larger when compared to the variation of the BASE surface. 

This may be due to the absorbed gases by surfaces of the weld area during cool-down after 

welding procedure. 

After plasma processing, average SEY values have increased and have also grouped 

together at approximately the same value (Fig. 5.7 (b)). The variation of the SEY across the 
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indicate that the plasma processing formed the uniform SEY surface layer on all samples and 

characteristic surfaces. Increase in the average SEY may have occurred due to the surface 

reactivity with air at atmospheric pressure. A similar effect was described in [3], where the SEY 

of the plasma treated surface increased after air exposure. The maximum average SEY values of 

samples before and after plasma processing are given in Table 5.1. In addition, the possible range 

of the SEY values on the entire surface of the cavity was inferred based on the obtained results 

from the samples by calculating the 90% prediction interval for characteristic surfaces (Fig. 5.8). 

A reduction of the SEY variation after plasma processing led to a narrower prediction interval. 

 

 

 

 

Fig. 5.8  The average SEY with 90% prediction interval bars as a function of E0 at θ=0°, (a) 

before and (b) after plasma processing. 
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Table 5.1  Average maximum yield ( max ) and corresponding energy (E0), (a) before and (b) 

after plasma processing at θ=0°. 

Characteristic 

surface 

(a)  (b) 

max  [-] E0 [eV]  
max  [-] E0 [eV] 

BASE 2.19 320  2.68 320 

WZ 2.48 320  2.69 320 

HAZ 2.44 320  2.75 320 

R-HAZ 2.40 320  2.62 320 

 

 

 

 

5.2.2 SEY measured at θ=+15° 

The SEY was measured at the +15° of the incident angle on a sample from each set. At this 

incident angle, there are nine measurement spots on a sample where SEY measurements were 

taken. 

Before plasma processing, the average values of SEY were different between characteristic 

surfaces. The SEY curves of WZ, HAZ, and R-HAZ surfaces have a similar general shape, though 

different magnitudes across the energy range of primary electrons (Fig. 5.9 (a)). The BASE 

surface had a different slope after 320 eV of primary electron energy, when compared to the 

weld area surfaces. Variation of the SEY is the largest on the WZ surface and reduces as the 

measurement spot moves farther from the weld zone. The smallest variation is measured on the 

BASE surface. 
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Fig. 5.9  The average SEY with sample standard deviation bars as a function of E0 at θ=+15°, (a) 

before and (b) after plasma processing. 

 

 

 

After plasma processing, average SEY values have approximately the same value for all 

three surfaces of the weld area (WZ, HAZ, and R-HAZ). Almost an exact overlap was observed 

on the weld area characteristic surfaces (Fig. 5.9 (b)). The SEY of the BASE surface increased in 

the 60 to 1200 eV energy range of the primary electrons and decreased in the 1200 to 2000 eV 

energy range. The resulting SEY curve of the BASE shows better agreement with the SEY for the 

weld area characteristic surfaces. This indicates that regardless of the initial state of the surface, 

plasma processing resulted in a more uniform SEY properties of the surface layer. 

Variability of the SEY magnitudes was significantly reduced on the WZ, HAZ and R-HAZ 

surfaces after plasma processing. In contrast, the variability of the SEY on the BASE surface 

increased over the entire energy range. The changes in the average value of the maximum SEY 

values are presented in Table 5.2. Average maximum SEY increased for BASE and HAZ surfaces, 

decreased for R- HAZ surface, and remained approximately the same on the WZ surface. A 90% 

prediction interval of the entire cavity surface was inferred based on the nine measurements 
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performed on the sample from each set, before and after plasma processing (Fig. 5.10). It can be 

concluded that the plasma processing improved the uniformity of the surface when the SEY 

magnitude is considered. 

 

 

 

 

Fig. 5.10  The average SEY with 90% prediction interval bars as a function of E0 at θ=+15°, (a) 

before and (b) after plasma processing. 

 

 

 

Table 5.2  Average maximum yield ( max ) and corresponding energy (E0), (a) before and (b) 

after plasma processing at θ=+15°. 

Characteristic 
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(a)  (b) 

max  [-] E0 [eV]  
max  [-] E0 [eV] 
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HAZ 2.40 320  2.69 320 

R-HAZ 3.24 320  2.60 320 
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5.2.3 SEY measured at θ=-15° 

The examined sample was tilted to form a -15° incident angle with the primary electron 

beam. The SEY measurements were performed on one sample from each set. The measurements 

were made at nine different spots on each sample and were used to calculate the average, sample 

standard deviation, and 90% prediction interval spots on each sample were used to obtain the 

SEY results and calculate the average, sample standard deviation, and a 90% prediction interval. 

 

 

 

 

Fig. 5.11  The average SEY with sample standard deviation bars as a function of E0 at θ=-15°, (a) 

before and (b) after plasma processing. 
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general trend (Fig. 5.11 (a)). The BASE and HAZ surface have the same average SEY values 

across the energy range and the same variation above 1200 eV of primary electron energy. 

Below that energy, BASE surface exhibits larger SEY variation. The average SEY values for WZ 

and R-HAZ are the same up to 400 eV of primary electron energy. Above that energy level, R-
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HAZ surface has a slightly higher SEY when compared to the WZ. The variation of the SEY of 

both surfaces was no more than 4%. 

 

 

 

Table 5.3  Average maximum yield ( max ) and corresponding energy (E0), (a) before and (b) 

after plasma processing at θ=-15°. 

Characteristic 

surface 

(a)  (b) 

max  [-] E0 [eV]  
max  [-] E0 [eV] 

BASE 2.29 320  2.66 320 

WZ 2.17 320  2.61 320 

HAZ 2.28 320  2.66 320 

R-HAZ 2.16 320  2.62 320 

 

 

 

 

After plasma processing, the average SEY magnitudes of all characteristic surfaces 

increased to approximately the same value (Fig. 5.11 (b)). Variation of the SEY results of all 

surfaces decreased, except for R-HAZ surface which exhibited a minor increase in variability. 

The change in magnitude of the average maximum SEY for characteristic surfaces is given in 

Table 5.3. In addition, the predicted SEY values on the entire surface of the cavity was inferred 

by calculating the 90% prediction interval (Fig. 5.12). The increase in variability of SEY results 

on R-HAZ surface caused the increase of the range of possible SEY values after plasma 

processing. 
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Fig. 5.12  The average SEY with 90% prediction interval bars as a function of E0 at θ=-15°, (a) 

before and (b) after plasma processing. 

 

 

 

5.2.4 SEY measured at θ=+30° 

A sample from each set was tilted so that the normal to the surface formed +30° angle with 

the primary electron beam. At +30° angle, SEY measurements were made at nine different 

measurement spots. 

Before plasma processing, the average SEY values can be separated in two groups (Fig. 

5.13 (a)). In the first group, BASE and HAZ surfaces had almost the same average SEY values 

across the energy range of primary electrons. Variation of the SEY measurements for these 

surfaced were no more than 8% and approximately the same. In the second group, WZ and R-

HAZ surfaces had almost the same average SEY values. However, variation of the SEY 

measurements was more significant on the WZ surface. Variation of the SEY measurements on R-

HAZ was comparable to BASE and HAZ surfaces. 
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Fig. 5.13  The average SEY with sample standard deviation bars as a function of E0 at θ=+30°, 

(a) before and (b) after plasma processing. 

 

 

 

Table 5.4  Average maximum yield ( max ) and corresponding energy (E0), (a) before and (b) 

after plasma processing at θ=+30°. 

Characteristic 

surface 

(a)  (b) 

max  [-] E0 [eV]  
max  [-] E0 [eV] 

BASE 2.42 320  2.70 320 

WZ 2.58 320  2.63 320 

HAZ 2.44 320  2.59 320 

R-HAZ 2.58 320  2.58 320 

 

 

 

 

After plasma processing, average SEY values increased for all characteristic surfaces (Fig. 

5.13 (b)). The average SEY on the BASE surface increased more when compared to the surfaces 

of the weld area. The variation of the SEY measurements was reduced for the HAZ surface, and 

remained approximately the same (2%) on the BASE surface. The WZ surface exhibited a 

reduction in SEY measurements variation over the entire energy range of the primary electrons. 

The variation of the SEY results on the R-HAZ surface remained the same for primary electron 
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energies up to 400 eV, after which there was an increase. The changes in the average maximum 

SEY values of the characteristic surfaces are given in Table 5.4. The 90% prediction interval of 

the entire cavity surface was inferred based on the nine measurements performed on the sample 

from each set, before and after plasma processing (Fig. 5.14). 

 

 

 

 

Fig. 5.14  The average SEY with 90% prediction interval bars as a function of E0 at θ=+30°, (a) 

before and (b) after plasma processing. 

 

 

 

5.2.5 SEY measured at θ=-30° 

A sample from each set was used to measure the SEY at -30° incident angle of primary 

electrons. The SEY measurements were made at nine different measurement spots on each 

sample. 
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Fig. 5.15  The average SEY with sample standard deviation bars as a function of E0 at θ=-30°, (a) 

before and (b) after plasma processing. 

 

 

 

Before plasma processing, the average maximum SEY values were in the range from 2.25 to 

2.40, and SEY curves followed the same trend (Fig. 5.15 (a)). The variation of the SEY results is 

the largest for BASE surface, followed by WZ, HAZ, and R-HAZ. 

After plasma processing, all characteristic surfaces exhibit the increase in average SEY 

(Fig. 5.15 (b)). However, the BASE surface increase was significantly higher when compared to 

the weld area surfaces. Variation of the SEY measurements on the BASE surface were marginally 

reduced. The SEY of the weld area surfaces have converged to the same average values, while 

variation of the SEY magnitudes has decreased significantly after plasma processing. The 

changes in the average maximum SEY on the characteristic surface are presented in the Table 

5.5. Based on the SEY measurements performed on the sample, range of yield magnitudes of the 

characteristic surfaces of the cavity was inferred by calculating the 90% prediction interval (Fig. 

5.16). 
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Table 5.5  Average maximum yield ( max ) and corresponding energy (E0), (a) before and (b) 

after plasma processing at θ=-30°. 

Characteristic 

surface 

(a)  (b) 

max  [-] E0 [eV]  
max  [-] E0 [eV] 

BASE 2.41 320  3.27 320 

WZ 2.49 320  2.69 320 

HAZ 2.36 320  2.66 320 

R-HAZ 2.25 320  2.63 320 

 

 

 

 

 

Fig. 5.16  The average SEY with 90% prediction interval bars as a function of E0 at θ=-30°, (a) 

before and (b) after plasma processing. 

 

 

 

5.2.6 SEY measured at θ=+45° 

A sample from each set was tilted to form a +45° angle with the surface of the sample. Six 

measurement spots on each sample were used to determine distribution of the SEY across the 

weld area and base metal surfaces. 
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Fig. 5.17  The average SEY with sample standard deviation bars as a function of E0 at θ=+45°, 

(a) before and (b) after plasma processing. 

 

 

 

Before plasma processing, the highest average value of SEY was measured on the BASE 

surface, while the lowest was measured on HAZ surface (Fig. 5.17 (a)). The WZ and R-HAZ had 

approximately the same average value of SEY. A similar trend of the SEY curve was observed on 

all characteristic surfaces. The variation of the SEY results was the most prominent on R-HAZ 

surface, followed by BASE, WZ, and HAZ. 

 

 

 

Table 5.6  Average maximum yield ( max ) and corresponding energy (E0), (a) before and (b) 

after plasma processing at θ=+45°. 

Characteristic 

surface 

(a)  (b) 

max  [-] E0 [eV]  
max  [-] E0 [eV] 

BASE 2.94 320  3.10 320 

WZ 2.68 320  2.95 320 

HAZ 2.53 320  2.94 320 

R-HAZ 2.65 320  3.09 320 
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Fig. 5.18  The average SEY with 90% prediction interval bars as a function of E0 at θ=+45°, (a) 

before and (b) after plasma processing. 

 

 

 

After plasma processing, all characteristic surfaces exhibited the increase in average SEY 

values (Fig. 5.17 (b)). Differences in SEY magnitudes over the entire primary electron energy 

range were much smaller between different surfaces after plasma processing. The average 

maximum SEY values of characteristic surfaces before and after plasma processing are given in 

Table 5.6. Disparate changes in variation of the SEY measurements on characteristic surfaces 

were observed. A reduction in variation was observed on the BASE and R-HAZ surfaces. The 

variation of the SEY results remained approximately the same for the WZ and HAZ surfaces. The 

90% prediction interval was calculated for all characteristic surfaces (Fig. 5.18). Since only two 

measurement spots were available for the R-HAZ surface, the correction factor used to calculate 

the interval caused the inflation of the prediction interval. However, the same approach for 

calculating the prediction interval was used for the SEY results after plasma processing and much 

a narrower prediction interval was obtained. Taking the R-HAZ surface as an example, 

improvement in uniformity of the SEY of a surface layer after plasma processing is evident. 
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5.2.7 SEY measured at θ=-45° 

The SEY measurements were performed on a sample from each set. Surfaces of the 

examined samples were tilted to form a -45° incident angle with the primary electron beam. At 

this incident angle, six measurement spots were available per sample. 

 

 

 

 

Fig. 5.19  The average SEY with sample standard deviation bars as a function of E0 at θ=-45°, (a) 

before and (b) after plasma processing. 

 

 

 

The SEY curves for samples before plasma processing are shown in Fig. 5.19 (a). The 

average SEY curves for the weld area characteristic surfaces were grouped together. It can be 

observed that there is less than 10% difference between the SEY values for the same energy level 

of primary electrons. On the other hand, the average SEY curve of BASE surface had much larger 

values compared to the weld area surfaces. The 10% variation of the SEY measurements was 

observed on the WZ surface, whereas SEY variation was less than 4% for other surfaces. 

0 400 800 1200 1600 2000
1.0

1.5

2.0

2.5

3.0

3.5

(b)(a)

 

 BASE

 WZ

 HAZ

 R HAZ


 [

-]

E
0
 [eV]

0 400 800 1200 1600 2000
1.0

1.5

2.0

2.5

3.0

3.5

 

 BASE

 WZ

 HAZ

 R HAZ


 [

-]

E
0
 [eV]



www.manaraa.com

112 

Table 5.7  Average maximum yield ( max ) and corresponding energy (E0), (a) before and (b) 

after plasma processing at θ=-45°. 

Characteristic 

surface 

(a)  (b) 

max  [-] E0 [eV]  
max  [-] E0 [eV] 

BASE 3.18 320  2.94 320 

WZ 2.48 320  3.07 320 

HAZ 2.54 320  3.08 320 

R-HAZ 2.41 320  2.95 320 

 

 

 

 

 

Fig. 5.20  The average SEY with 90% prediction interval bars as a function of E0 at θ=-45°, (a) 

before and (b) after plasma processing. 

 

 

 

After plasma processing, average SEY curves of characteristic surfaces have grouped 

together (Fig. 5.19 (b)). Reduction of the average SEY values can be observed on the BASE 

surface, while the average SEY curves of weld area surfaces have increased. The average 

maximum SEY values before and after plasma processing are given in Table 5.7. The variation of 

the SEY results was reduced on the BASE surface and the R-HAZ surface up to 500 eV of the 

primary electron energy, while the variation remained the same on the WZ surface. The increase 
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in the variation was observed on the HAZ surface and the R-HAZ surface for primary electron 

energies higher than 500 eV. Based on the measurements performed on the characteristic 

surfaces of the samples, 90% prediction intervals are shown in Fig. 5.20. 

5.2.8 SEY measured at θ=+60° 

A sample from each set was used to measure the SEY at +60° incident angle of primary 

electrons, before and after plasma processing. At this incident angle, three measurement spots 

were available per sample. 

 

 

 

 

Fig. 5.21  The average SEY with sample standard deviation bars as a function of E0 at θ=+60°, 

(a) before and (b) after plasma processing. 

 

 

 

Before plasma processing, the average SEY curves follow the same trend. BASE, WZ and R-

HAZ surfaces have an almost overlapping average SEY, while the HAZ surface has somewhat 

lower average SEY values (Fig. 5.21 (a)). The largest variation of SEY was observed on the WZ 
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surface, while the lowest was observed on the HAZ surface. There are no standard deviation bars 

on R-HAZ surface because only one measurement was performed on that characteristic surface. 

After plasma processing, the average SEY values have increased for all characteristic 

surfaces (Fig. 5.21 (b)). The average SEY values of the WZ and the HAZ surfaces have 

completely overlapped. A somewhat higher average SEY was observed on the BASE and the R-

HAZ surfaces. The change between the average maximum SEY of the characteristic surfaces 

before and after plasma is given in Table 5.8. The variation of the SEY has decreased only on the 

WZ and BASE surfaces. A small increase in SEY variation was observed on the HAZ surface. The 

variation of SEY after plasma processing was almost the same for WZ and HAZ surfaces. The 

prediction interval for WZ is fairly large, with SEY values going below zero, which is impossible 

(Fig. 5.22). This is due to the fact that only two measurements were performed at the WZ surface. 

A large correction factor for small number of measurements inflated the prediction interval 

significantly. For the same surface, the prediction interval reduced significantly after plasma 

processing, indicating a more uniform surface layer, in terms of SEY. 

 

 

 

Table 5.8  Average maximum yield ( max ) and corresponding energy (E0), (a) before and (b) 

after plasma processing at θ=+60°. 

Characteristic 

surface 

(a)  (b) 

max  [-] E0 [eV]  
max  [-] E0 [eV] 

BASE 3.24 500  3.64 500 

WZ 3.32 500  3.49 500 

HAZ 2.98 500  3.48 500 

R-HAZ 2.28 500  3.72 500 
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Fig. 5.22  The average SEY with 90% prediction interval bars as a function of E0 at θ=+60°, (a) 

before and (b) after plasma processing. 

 

 

 

5.2.9 SEY measured at θ=-60° 

A sample from each set was positioned at a -60° incident angle with respect to the primary 

electron beam. Due to sample positioning constraints, only three measurement spots per sample 

were available. 

Before plasma processing, the difference between the average SEY values of the BASE, WZ 

and HAZ, and R-HAZ surfaces was significant (Fig. 5.23 (a)). The SEY measured at the BASE 

surface was the highest amongst all characteristic surfaces, and had the maximum variation less 

than 10%. The WZ and HAZ surfaces had almost identical average SEY curves, while the 

variation of SEY measurements on each surface was comparable. No statistical calculation was 

made for the R-HAZ surface, since only one measurement was performed due to limitation in 

sample positioning. 
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Fig. 5.23  The average SEY with sample standard deviation bars as a function of E0 at θ=-60°, (a) 

before and (b) after plasma processing. 

 

 

 

Table 5.9  Average maximum yield ( max ) and corresponding energy (E0), (a) before and (b) 

after plasma processing at θ=-60°. 

Characteristic 

surface 

(a)  (b) 

max  [-] E0 [eV]  
max  [-] E0 [eV] 

BASE 4.10 500  3.57 500 

WZ 3.29 500  3.47 500 

HAZ 2.24 500  3.43 500 

R-HAZ 2.84 500  3.45 500 

 

 

 

 

After plasma processing, the average SEY curves of the characteristic surfaces have 

converged (Fig. 5.23 (b)). The average SEY values of weld area surfaces have increased across 

the entire energy range of primary electrons, whereas SEY values decreased for the BASE 

surface. The change of the average maximum SEY for all characteristic surfaces before and after 

plasma processing is given in Table 5.9. The variation of SEY results for the BASE, WZ, and HAZ 

surfaces was significantly reduced, except for the R-HAZ surface which was determined for one 
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spot only. The prediction interval of 90% was calculated for all characteristic surfaces except for 

the R-HAZ (Fig. 5.24). Due to the small number of measurements, large prediction intervals were 

determined for WZ surface before plasma processing. After plasma processing a significant 

decrease of prediction intervals for the BASE, WZ, and HAZ surfaces can be observed. This 

indicates that a high SEY uniformity surface layer was formed as consequence of plasma 

processing. 

 

 

 

 

Fig. 5.24  The average SEY with 90% prediction interval bars as a function of E0 at θ=-60°, (a) 

before and (b) after plasma processing. 

 

 

 

5.2.10 SEY as a function of incident angle of primary electrons 

The effect of the incident angle of primary electrons on characteristic surfaces was 

determined by plotting the SEY values measured at different incident angles for a single primary 

electron energy.  
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A cosine law [27] used for modeling the influence of incident angle of electrons was fitted 

to the experimental results. The secondary electron yield measured at E0=320 eV are plotted as a 

function of the incident angle of primary electron beam in the range from -60° to +60° (Fig. 

5.25Fig. 5.28), before and after plasma processing. It was observed that the increase in the 

incident angle of primary electrons was followed by the increase in SEY. This can be contributed 

to the formation of secondary electrons closer to the surface, which have a higher probability of 

leaving the surface of material. 

Equation (4.5) is a function of the SEY at normal incidence, incident angle θ, and the 

parameter η which is a material dependent parameter. For each characteristic surface, the 

parameter η was determined as the value that provides the best fit of the experimental results. 

The values of parameter η given in Table 5.10 are obtained by minimizing the residual of the 

average SEY value of measurements and SEY value predicted by the Eq. (4.5). The range of η 

across characteristic surfaces for samples prior to plasma processing is much larger than for 

samples after plasma processing. This indicates that after plasma processing, samples have more 

uniform surface layer across the characteristic surfaces. Highest value of η was determined for 

BASE surface, while the differences between the weld area surfaces were much smaller. 

 

 

 

Table 5.10  Values of parameter η for characteristic surfaces, (a) before and (b) after plasma 

processing. 

Characteristic 

surface 

η 

(a) (b) 

BASE 0.731 0.388 

WZ 0.331 0.318 

HAZ 0.256 0.267 

R-HAZ 0.279 0.399 
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Fig. 5.25  SEY as a function of θ for E0=320 eV of BASE surface, (a) before and (b) after plasma 

processing. Statistical bars represent the range of 90% prediction interval. 

 

 

 

 

Fig. 5.26  SEY as a function of θ for E0=320 eV of WZ surface, (a) before and (b) after plasma 

processing. Statistical bars represent the range of 90% prediction interval. 
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Fig. 5.27  SEY as a function of θ for E0=320 eV of HAZ surface, (a) before and (b) after plasma 

processing. Statistical bars represent the range of 90% prediction interval. 

 

 

 

 

Fig. 5.28  SEY as a function of θ for E0=320 eV of R-HAZ surface, (a) before and (b) after 

plasma processing. Statistical bars represent the range of 90% prediction interval. 
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5.2.11 Properties of the characteristic surfaces 

The surface characterizations were performed on the BASE, WZ, and HAZ sample surfaces 

to determine the effect of Ar/O2 plasma processing on the surface roughness, microstructure, and 

chemical composition. The surface roughness was measured with the atomic force microscope 

(AFM). The scanning electron microscope (SEM) was used to determine the surface 

microstructure. The chemical composition of the surface layer was measured by energy-

dispersive x-ray spectroscopy (EDS). 

 

 

 

Table 5.11  Surface statistics measured on a 50x50 μm surface area by AFM on characteristic 

surfaces, (a) before and (b) after plasma processing. 

 (a) (b) 

BASE 

Mean roughness 105.13 nm 119.10 nm 

Max. height 1.018 μm 1.109 μm 

Surface area 2539.8 μm2 2512.3 μm2 

WZ 

Mean roughness 136.06 nm 175.67 nm 

Max. height 1.185 μm 1.342 μm 

Surface area 2540.0 μm2 2520.1 μm2 

HAZ 

Mean roughness 95.941 nm 178.70 nm 

Max. height 1.131 μm 1.158 μm 

Surface area 2509.1 μm2 2513.5 μm2 

 

 

 

 

Surface roughness of the BASE, WZ, and HAZ was measured by AFM on a surface area of 

50x50 μm (Table 5.11). Plasma processing in Ar/O2 had no effect on the global surface 

roughness of the characteristic surfaces measured by AFM. Because of the small surface of the 

measurement, it is not feasible to repeat the scan on the same exact spot on the sample before 

and after plasma processing. Also, due to the limitation in the vertical motion of the AFM 

scanning probe, measurements were restricted to the areas where the roughness was within the 

capabilities of the microscope. The mean roughness measured on characteristic surfaces of 
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samples before and after plasma processing indicate that there is no change in the surface 

roughness due to plasma processing. 

 

 

 

  
(a)      (b) 

Fig. 5.29  SEM micrographs of BASE surface at x1,000 magnification, (a) before and (b) after 

plasma processing. Granular inclusions on the surface (a) were almost completely removed by 

processing in Ar/O2 plasma for 1 hour. 

 

 

 

 

SEM micrographs were taken at BASE, WZ, and HAZ surfaces before and after plasma 

processing. Before plasma processing, the SEM micrographs revealed the presence of sub-

micrometer size inclusions on the BASE surface (Fig. 5.29 (a)). Furthermore, the BASE surface 

was more densely populated with the inclusions than the HAZ, while the WZ had no trace of 

them. Only the micrographs of the BASE surface were included because of the large density of 

inclusions and the same effect in removal of the inclusions after plasma processing on all 

characteristic surfaces. Decreasing surface density of these inclusions towards the WZ may be 

due to the effect of the elevated temperature during welding procedure. SEM measurements 

performed after plasma processing indicated that granular inclusions were almost completely 
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removed from BASE surface, either by mechanical sputtering with argon ions or by chemical 

reaction with oxygen ions (Fig. 5.29 (b)). 

 

 

 

  
(a)      (b) 

Fig. 5.30  SEM micrographs of the BASE surface at x50,000 magnification, (a) before and (b) 

after plasma processing. 

 

 

 

A SEM with a x50,000 magnification was used to characterize the granular inclusions. A 

micrograph of a group of granular inclusions on a BASE surface before plasma processing is 

shown in Fig. 5.30 (a). It was observed that the surface was covered with sub-micrometer 

inclusions which can form larger inclusions, completely covering the base surface. After plasma 

processing, a SEM picture was taken at the same magnification and of one of the few remaining 

inclusions (Fig. 5.30 (b)). Since the majority of the granular inclusions were removed (Fig. 5.29), 

this indicates that the plasma was effective in removing the contaminants from the surface layer. 

EDS measurements were also performed to determine the elemental composition of the 

observed area. EDS was performed directing the x-rays at the larger cluster of granular 

inclusions. The spectrum revealed high presence of niobium, and smaller content of silicon and 
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oxygen (Fig. 5.31). This leads to a conclusion that the observed granular inclusions are silicon 

oxide. The number of EDS counts is not the same before and after plasma processing (Fig. 5.31), 

however the ratio of the two highest niobium peaks are approximately the same. To compare the 

oxygen content of the granular inclusion, the ratio of oxygen peak and the maximum niobium 

peak were calculated, before and after plasma processing. After plasma processing, the relative 

elevation of the oxygen content can be observed in the remaining granular inclusions (Fig. 5.31 

(b)). 

 

 

 

   
(a)      (b) 

Fig. 5.31  EDS spectra measured at the high concentration of granular inclusions on BASE 

surface, (a) before and (b) after plasma processing. A relative increase in the oxygen content can 

be observed after plasma processing. 

 

 

 

Larger areas of sample characteristic surfaces are measured by EDS to obtain chemical 

composition of sample surface before and after plasma processing. Before plasma processing, the 

EDS of the BASE surface did not show a significant content of oxygen (Fig. 5.32 (a)). After 
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plasma processing, oxygen was present on the surface of the sample (Fig. 5.32 (b)). An increase 

in oxygen content could have occurred during one or both of the two steps in the experimental 

process. The first opportunity was during the sample cooldown in plasma processing chamber 

which was done in an Ar/O2 atmosphere. The second opportunity was during the exposure of the 

sample to the air at atmospheric pressure prior to the EDS measurement. An observed increase in 

the SEY after plasma processing can be related to the higher oxygen content on the surface. 

 

 

 

   
(a)      (b) 

Fig. 5.32  EDS spectra measured on a characteristic BASE surface, (a) before and (b) after 

plasma processing. A spectral line after plasma processing indicates an increase in oxygen 

content on the BASE surface. 

 

 

 

5.3 Energy distribution curves 

The energy distribution curve (EDC) of the emitted electrons was determined for several 

different primary electron energy levels at a normal incident angle of the primary electrons. 
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The retarding electric field can be created around the collector by placing a high voltage 

power supply in the collector electric circuit (see Fig. 4.14). When the retarding potential 

exceeds the energy of the primary electron beam, all electrons emitted from the sample are 

completely reflected by the collector. With the incremental reduction of the retarding potential, 

an ever larger number of emitted electrons can impact the surface of the collector. EDC 

measurements were performed at three primary electron beam energies (140, 180, and 300 eV), 

but the obtained results were unreliable due to the formation of the tertiary electrons on the 

surface of the collector. 

 

 

 

 

Fig. 5.33  Current measured on the collector (ic) and the BASE sample (is) for indicated E0, as a 

function of the collector retarding potential. 

 

 

 

Energy distribution curves were determined for three primary electron beam energies at 

140, 180, and 300 eV. The initial retarding potential values on the collector were 142, 182, and 
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302 V, respectively. The highest retarding potential applied to the collector was always 2 volts 

higher than the primary electron beam energy in order to ensure that all electrons are reflected 

from the collector surface. The retarding potential was gradually reduced in increments of 2 

volts, while the collector and sample current were measured after each incremental reduction of 

the voltage. EDC measurements always ended at +30 V on the collector when the current 

measured on the collector and sample stabilized, while voltage of the sample was kept at -10 V at 

all times. Once the retarding potential reached 0 V, polarity of the power supply was reversed 

and the voltage was increased in 2 V increments to +30 V. Electron beam parameters used to 

measure the energy distribution curves are the same as for measurement of SEY. 

 

 

 

 

Fig. 5.34  Primary electron beam current (i0) calculated as the sum of collector and BASE sample 

currents for indicated E0, as a function of the collector retarding potential. 
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Directions and corresponding signs of the current were adopted as follows: a positive 

current indicates the inflow of electrons to the surface where the current was measured, while the 

negative current implies outflow of the electrons from the surface. For example, the measured 

currents on the collector and the BASE sample as a function of the collector retarding potential 

are shown in Fig. 5.33. The primary electron beam current was determined as the sum of 

collector and samples currents (Fig. 5.34). It can be observed that a sudden drop in the primary 

electron beam current occurs at the highest value of the collector retarding potential. This is due 

to the high retarding potential which caused part of the electrons coming from the electron gun to 

be blocked while passing through the aperture of the collector. All of the electrons started 

passing through the collector aperture after the retarding potential became equal to or lower than 

the primary electron beam energy. At that moment, the beam current became constant. In 

addition, the primary electron beam current suddenly dropped when both the collector and the 

sample were at the same potential (-10 V). The curve of the current magnitudes on the collector, 

the samples, and the primary electron beam as a function of retarding potential shown in Fig. 

5.33 and Fig. 5.34 were also observed on other characteristic surfaces (WZ and HAZ). 
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Fig. 5.35  (a) Normalized collector current as a function of retarding potential and (b) 

corresponding EDC, at E0=140 eV. 

 

 

 

 

Fig. 5.36  Normalized collector current as a function of the retarding potential for copper sample 

[56]. 
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normalization and the EDC of emitted electrons from the BASE surface for E0=140 eV are 

presented in Fig. 5.35. 

To the best of knowledge of the author, there are no published results of normalized 

collector current curve for a niobium surface. The normalized collector current curves for copper 

were published in [56]. Normalized collector current curves determined in this research cannot 

be directly compared with the results in [56] due to the difference in the sample material and the 

fact that the measurements were made at different primary electron energy level since they were 

not measured on the same meter at the sample primary electron energy level. By comparing the 

trends of the curves reported in Fig. 5.35 (a) and Fig. 5.36, it can be observed that there are 

several differences. First, the results match when the retarding potential was larger than the 

energy of the primary electrons. Second, at the point where the retarding potential was the same 

as the primary electron energy, there was an increase in normalized current. As the retarding 

potential was further reduced to zero, collector current continued to rise slowly (Fig. 5.36). The 

current on the collector gradually increased as the true secondary electrons were allowed to reach 

the collector surface. On the other hand, after the initial peak at primary electron energy, the 

collector current drops back to zero (Fig. 5.35 (a)). As the retarding potential was further 

reduced, the reversal of the collector current direction was observed until the retarding potential 

was reduced to 20 V, when compared to the current direction in Fig. 5.36. The reversed current 

direction indicated that the number of electrons leaving the surface of the collector was larger 

than the number of arriving electrons. Electrons leaving the surface of the collector are called 

tertiary electrons. It can be noticed that current on the sample increased with the same magnitude 

but in the opposite direction as the current on the collector. That leads to a conclusion that the 

electrons leaving the surface of the collector are landing on the sample. Below the critical 
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retarding potential, the number of true secondary electrons reaching the surface of the collector 

counteracts the tertiary electrons leaving the collector surface. 

The EDC is accurately measured by retarding field analyzer (RFA), which has several grids 

under different potentials to reflect formed tertiary electrons. The EDCs measured with the 

existing experimental setup can only be used qualitatively to provide an insight on the effect of 

plasma on the energy distribution of the electrons reflected and emitted by the sample. 

 

 

 

 

Fig. 5.37  EDC of BASE sample measured before (BPP) and after (APP) plasma processing as a 

function of secondary electron energy at E0=140 eV. 

 

 

 

The EDC for 140 eV of primary electron energy was obtained by measuring the cumulative 

current on the collector. The measurements were performed on the BASE sample at normal 

incident angle of the primary electrons. The collector current was normalized with respect to the 

total current and differentiated to determine energy distribution of the emitted electrons. It can be 

observed that EDC at this energy level of primary electrons has two distinct peaks (Fig. 5.37). 
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The first peak appears at 140 eV energy. This peak indicates the elastically reflected electrons 

since their energy is equal to the energy of the primary electrons. With the further decrease of the 

retarding potential, the second peak appears at the 10 eV of the electron energy, i.e. when the 

true secondary electrons had enough energy to overcome the retarding potential of the collector. 

 

 

 

 

Fig. 5.38  EDC of BASE sample measured before (BPP) and after (APP) plasma processing as a 

function of secondary electron energy at E0=180 eV. 
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electron energy increase. At the same primary electrons energy, the true secondary electron peak 

had a higher magnitude after plasma processing. The increase of the peaks on the EDC curves 

after plasma processing coincides with the observed increase in SEY, at all three primary 

electrons energies. Similar observations were made on the WZ and HAZ surfaces. 

 

 

 

 

Fig. 5.39  EDC of BASE sample measured before (BPP) and after (APP) plasma processing as a 

function of secondary electron energy at E0=300 eV. 
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CHAPTER 6 

 

6 CONCLUSION 

An experimental setup was developed to observe the secondary electron emission at 

impacting electron energies in the range from 60 to 2000 eV, and different incident angles of 

primary electrons. The samples used for experiments were made from a niobium plate used for 

manufacturing SRF cavities. A sample manipulating system developed for observing the effects 

of the electrons impacting the surface at different angles allowed the measurement of incident 

angles in the range from -60° to +60° with the 15° angle increment. Three sets of samples, 

representative of three different types of microstructures found in SRF cavities, were used in this 

work to study SEE of characteristic surfaces. One of the sample sets was made to represent the 

base surface of the niobium cavity, with a microstructure representative of cold work 

deformation which was not affected by the electron beam welding. The other two sets of samples 

had several characteristic surfaces identical to the weld area of the cavity, with microstructures 

affected by the heat during electron beam welding process. Characteristic surfaces included the 

weld zone (WZ), heat affected zone (HAZ), and base material surface which was divided into 

heat treated surface (R-HAZ) adjacent to the heat affected zone and non-treated surface of 

niobium (BASE). The position of the characteristic surfaces on each sample set was determined 

and SEY measurements were performed. Secondary electron yield results obtained from the 

similar characteristic surfaces between different sample sets were combined. 

The susceptibility of the SEY magnitude to repeated electron beam exposure was measured 

on the BASE and WZ surface. Seven SEY measurements were performed on a single spot of both 
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surfaces at normal incident angle of primary electrons. A decrease in SEY magnitude was 

observed after each measurement indicating that the electron beam was modifying the surface of 

the sample. After completing the SEY measurement, samples were placed in a commercial 

plasma cleaning system where they were processed for one hour by ionized nitrogen gas. 

Following plasma processing, additional seven SEY measurements were performed to test the 

effect of plasma processing on the SEY magnitude. A substantial reduction in the SEY change 

after each measurement was observed. On the other hand, the average SEY curve of the BASE 

surface after plasma processing was larger when compared to the average SEY before plasma 

processing. The increase of the SEY after plasma processing was contributed to the higher 

reactivity of the surface to the air at atmospheric pressure, which was also observed in previously 

published results. 

The uniformity of the SEY across the surface was determined by taking measurements at 

different spots on the sample. The secondary electron yield variation of all characteristic surfaces 

was determined by averaging the results obtained from multiple measuring spots on the sample 

and calculating the sample standard deviation. Based on the preformed measurements, a 

prediction interval of possible SEY magnitudes on the characteristic surfaces was calculated at a 

0.9 probability. 

In addition, the influence of the incident angle of the primary electrons on the SEY of 

characteristic surfaces was determined. After completing the SEY measurements, samples were 

processed in an argon/oxygen gas mixture plasma for one hour. Following plasma processing, 

the SEY measurements were repeated on all samples and the results were compared with the 

results before plasma processing. The majority of the experiments showed a significant decrease 

in the SEY variation across the characteristic surfaces after plasma processing. It was also 



www.manaraa.com

136 

observed that after plasma processing the average SEY magnitudes of all characteristic surfaces 

coincide to a great degree. 

Three different surface characterizations were performed on WZ, HAZ and BASE surfaces, 

namely surface roughness, surface microstructure, and chemical composition. 

The surface roughness was measured by an atomic force microscope on characteristic 

surfaces before and after plasma processing. No changes were observed in the mean roughness 

after plasma processing.  

The surface microstructure was examined with the scanning electron microscope. An 

examination detected sub-micrometer granular inclusions on the surfaces of the samples before 

plasma processing. After plasma processing, most of the granular inclusions were removed. 

The chemical composition of the characteristic surfaces was determined by an energy-

dispersive x-ray spectroscopy (EDS). The EDS showed an increase in oxygen content of all 

characteristic surfaces, after plasma processing. This indicates the increase in the niobium 

surface reactivity with the air and formation of oxides after plasma processing. 

The energy distribution of the reflected and emitted electrons was expressed with the energy 

distribution curve. An energy distribution curve was determined by measuring the current on the 

collector in a range of retarding potentials starting from the energy level of primary electrons up 

to 0 V. Specifically, the retarding potential was reduced in 2 V increments while the current was 

measured at each value. To obtain EDC, a cumulative current was normalized by the primary 

electron beam current and differentiated with respect to the energy. The resulting curves were 

used to qualitatively describe the effect of plasma, due to the high influence of tertiary electrons 

formed on the surface of the collector. For all three primary electron energies EDC peak of true 

secondary electrons was of higher intensity after plasma processing, indicating the increase in the 
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quantity of low energy electrons emitted from the surface. The increase of true secondary 

electron quantity can be related to the observed increase of SEY after plasma processing. 

The experimental results provided the insight on the effect of plasma processing on the 

surface of cavity grade niobium. The results showed beneficial effects of plasma on the decrease 

of susceptibility and the increase in uniformity of the SEY between characteristic surfaces of the 

sample. Specifically, the processing in nitrogen plasma resulted in a reduced variation of the SEY 

during repeated exposure of a single measurement spot to the electron beam. Processing in 

nitrogen plasma decreased the sensitivity of surface SEY to repeated electron beam exposure. 

Furthermore, the plasma processing of the samples in the Ar/O2 gas mixture leveled the SEY 

magnitude across the characteristic surfaces.  

Granular inclusions detected by SEM on the surface before plasma processing were 

identified as a silicon oxide, based on the EDS measurement. The majority of the granular 

inclusions were removed by processing the surface in an Ar/O2 plasma. Even though the oxides 

inclusions were removed, larger scale EDS measurement showed an increased oxygen content. A 

higher oxygen content could be related to the observed increase of average SEY measured on all 

characteristic surfaces. 

The experimental setup accomplished the set goals. However, the effect of air exposure on 

the samples during the transfer between the processing and measurement chamber and resulting 

SEY magnitudes were underestimated. As part of future work, air exposure of samples can be 

avoided by adding an additional chamber to the developed experimental setup, in which the 

plasma processing can be performed. 

Namely an antechamber could be added to the SEY measurement chamber separated by a 

gate valve. This antechamber should be equipped with a gas flow system and a power supply 



www.manaraa.com

138 

which would allow the plasma processing of the samples in the experimental setup. At the same 

time, the sample manipulation system would have to be redesigned to allow the transfer of 

samples between the antechamber and the measurement chamber. The modified experimental 

setup would avoid the exposure of samples to air.  

The reduction of the SEY magnitudes might be achieved by varying the plasma processing 

parameters with intent to remove inclusions detected on the surface of the samples. The 

experiments indicate that inclusions were not completely removed from the surface by plasma 

processing with applied process parameters. Extended plasma processing, or processing at higher 

power levels could potentially improve the effectiveness of plasma processing. The results 

presented in this work were obtained for a single combination of rf power, duration of plasma 

processing, and pressure in the processing chamber for both N2 and Ar/O2. The optimal set of 

processing parameters could be determined by performing a series of experiments with a range in 

magnitude of rf power, duration of plasma processing, level of vacuum, and employed 

processing gases. 
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